print.cfo {CFO}R Documentation

Generate descriptive summary for objects returned by other functions

Description

Generate descriptive summary for objects returned by other functions.

Usage

## S3 method for class 'cfo'
print(x, ...)

Arguments

x

the object returned by other functions

...

ignored arguments

Details

print() prints the objects returned by other functions.

Value

print() prints the objects returned by other functions.

Note

In the example, we set nsimu = 5 for testing time considerations. In reality, nsimu is typically set to 5000 to ensure the accuracy of the results.

Author(s)

Jialu Fang, Wenliang Wang, and Guosheng Yin

Examples


## settings for 1dCFO
nsimu <- 5; ncohort <- 12; cohortsize <- 3; init.level <- 1
p.true <- c(0.02, 0.05, 0.20, 0.28, 0.34, 0.40, 0.44); target <- 0.2
assess.window <- 3; accrual.rate <- 2; tte.para <- 0.5; accrual.dist <- 'unif'

## summarize the object returned by CFO.next()
decision <- CFO.next(target = 0.2, cys = c(0, 1, 0), cns = c(3, 6, 0), currdose = 3)
print(decision)

## summarize the object returned by lateonset.next()
enter.times<- c(0, 0.266, 0.638, 1.54, 2.48, 3.14, 3.32, 4.01, 4.39, 5.38, 5.76,
               6.54, 6.66, 6.93, 7.32, 7.65, 8.14, 8.74)
dlt.times<- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0.995, 0, 0, 0, 0, 0, 0, 0, 2.58)
current.t<- 9.41
doses<-c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4)
decision <- lateonset.next(design = 'f-aCFO', target, p.true, currdose = 4, assess.window,   
               enter.times, dlt.times, current.t, doses)
print(decision)

## summarize the object returned by CFO.selectmtd()
selmtd <- CFO.selectmtd(target=0.2, npts=c(3,3,27,3,0,0,0), ntox=c(0,0,4,2,0,0,0))
print(selmtd)

## summarize the object returned by CFO.simu()
aCFOtrial <- CFO.simu(design = 'aCFO', target, p.true, init.level, ncohort, cohortsize, seed = 1)
print(aCFOtrial)



# This test may take longer than 5 seconds to run
# It is provided for illustration purposes only
# Users can run this code directly

## summarize the object returned by lateonset.simu()
faCFOtrial <- lateonset.simu (design = 'f-aCFO', target, p.true, init.level,  
                ncohort, cohortsize, assess.window, tte.para, accrual.rate, accrual.dist, seed = 1)
print(faCFOtrial)

## summarize the object returned by CFO.oc()
faCFOoc <- CFO.oc (nsimu, design = 'f-aCFO', target, p.true, init.level, ncohort, cohortsize,
                      assess.window, tte.para, accrual.rate, accrual.dist, seeds = 1:nsimu)
print(faCFOoc)

## settings for 2dCFO
p.true <- matrix(c(0.05, 0.10, 0.15, 0.30, 0.45,
0.10, 0.15, 0.30, 0.45, 0.55,
0.15, 0.30, 0.45, 0.50, 0.60), 
nrow = 3, ncol = 5, byrow = TRUE)

cns <- matrix(c(3, 3, 0,
                0, 6, 0,
                0, 0, 0), 
              nrow = 3, ncol = 3, byrow = TRUE)
cys <- matrix(c(0, 1, 0,
                0, 2, 0,
                0, 0, 0), 
              nrow = 3, ncol = 3, byrow = TRUE)
currdose <- c(2,3); target <- 0.3; ncohort <- 12; cohortsize <- 3

## summarize the object returned by CFO2d.next()
decision <- CFO2d.next(target, cys, cns, currdose = currdose, seed = 1)
print(decision)

## summarize the object returned by CFO2d.selectmtd()
ntox <- matrix(c(0, 0, 2, 0, 0, 0, 2, 7, 0, 0, 0, 2, 0, 0, 0), nrow = 3, ncol = 5, byrow = TRUE)
npts <- matrix(c(3, 0, 12, 0, 0, 3, 12, 24, 0, 0, 3, 3, 0, 0, 0), nrow = 3, ncol = 5, byrow = TRUE)
selmtd <- CFO2d.selectmtd(target=0.3, npts=npts, ntox=ntox)
print(selmtd)

## summarize the object returned by CFO2d.simu()
CFO2dtrial <- CFO2d.simu(target, p.true, init.level = c(1,1), ncohort, cohortsize, seed = 1)
print(CFO2dtrial)

## summarize the object returned by CFO2d.oc()
CFO2doc <- CFO2d.oc(nsimu = 5, target, p.true, init.level = c(1,1), ncohort, cohortsize, 
                    seeds = 1:5)
print(CFO2doc)



[Package CFO version 1.3.1 Index]