simsart {CDatanet} | R Documentation |
Simulating data from Tobit models with social interactions
Description
simsart
simulates censored data with social interactions (see Xu and Lee, 2015).
Usage
simsart(formula, Glist, theta, tol = 1e-15, maxit = 500, cinfo = TRUE, data)
Arguments
formula |
a class object formula: a symbolic description of the model. |
Glist |
The network matrix. For networks consisting of multiple subnets, |
theta |
a vector defining the true value of |
tol |
the tolerance value used in the fixed point iteration method to compute |
maxit |
the maximal number of iterations in the fixed point iteration method. |
cinfo |
a Boolean indicating whether information is complete ( |
data |
an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables
in the model. If not found in data, the variables are taken from |
Details
For a complete information model, the outcome y_i
is defined as:
\begin{cases}y_i^{\ast} = \lambda \bar{y}_i + \mathbf{z}_i'\Gamma + \epsilon_i, \\ y_i = \max(0, y_i^{\ast}),\end{cases}
where \bar{y}_i
is the average of y
among peers,
\mathbf{z}_i
is a vector of control variables,
and \epsilon_i \sim N(0, \sigma^2)
.
In the case of incomplete information modelswith rational expectations, y_i
is defined as:
\begin{cases}y_i^{\ast} = \lambda E(\bar{y}_i) + \mathbf{z}_i'\Gamma + \epsilon_i, \\ y_i = \max(0, y_i^{\ast}).\end{cases}
Value
A list consisting of:
yst |
|
y |
the observed censored variable. |
Ey |
|
Gy |
the average of y among friends. |
GEy |
the average of |
meff |
a list includinh average and individual marginal effects. |
iteration |
number of iterations performed by sub-network in the Fixed Point Iteration Method. |
References
Xu, X., & Lee, L. F. (2015). Maximum likelihood estimation of a spatial autoregressive Tobit model. Journal of Econometrics, 188(1), 264-280, doi:10.1016/j.jeconom.2015.05.004.
See Also
Examples
# Groups' size
set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 200))
n <- sum(nvec)
# Parameters
lambda <- 0.4
Gamma <- c(2, -1.9, 0.8, 1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, Gamma, sigma)
# X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))
# Network
G <- list()
for (m in 1:M) {
nm <- nvec[m]
Gm <- matrix(0, nm, nm)
max_d <- 30
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Gm[i, tmp] <- 1
}
rs <- rowSums(Gm); rs[rs == 0] <- 1
Gm <- Gm/rs
G[[m]] <- Gm
}
# Data
data <- data.frame(X, peer.avg(G, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) <- c("x1", "x2", "gx1", "gx2")
## Complete information game
ytmp <- simsart(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, theta = theta,
data = data, cinfo = TRUE)
data$yc <- ytmp$y
## Incomplete information game
ytmp <- simsart(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, theta = theta,
data = data, cinfo = FALSE)
data$yi <- ytmp$y