homophily.re {CDatanet} | R Documentation |
Estimating network formation models with degree heterogeneity: the Bayesian random effect approach
Description
homophily.re
implements a Bayesian Probit estimator for network formation model with homophily. The model includes degree heterogeneity using random effects (see details).
Usage
homophily.re(
network,
formula,
data,
symmetry = FALSE,
group.fe = FALSE,
re.way = 1,
init = list(),
iteration = 1000,
print = TRUE
)
Arguments
network |
matrix or list of sub-matrix of social interactions containing 0 and 1, where links are represented by 1. |
formula |
an object of class formula: a symbolic description of the model. The |
data |
an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables
in the model. If not found in data, the variables are taken from |
symmetry |
indicates whether the network model is symmetric (see details). |
group.fe |
indicates whether the model includes group fixed effects. |
re.way |
indicates whether it is a one-way or two-way fixed effect model. The expected value is 1 or 2 (see details). |
init |
(optional) list of starting values containing |
iteration |
the number of iterations to be performed. |
print |
boolean indicating if the estimation progression should be printed. |
Details
Let p_{ij}
be a probability for a link to go from the individual i
to the individual j
.
This probability is specified for two-way effect models (fe.way = 2
) as
p_{ij} = F(\mathbf{x}_{ij}'\beta + \mu_j + \nu_j)
where F
is the cumulative of the standard normal distribution. Unobserved degree heterogeneity is captured by
\mu_i
and \nu_j
. The latter are treated as random effects (see homophily.fe
for fixed effect models).
For one-way random effect models (fe.way = 1
), \nu_j = \mu_j
. For symmetric models, the network is not directed and the
random effects need to be one way.
Value
A list consisting of:
model.info |
list of model information, such as the type of random effects, whether the model is symmetric, number of observations, etc. |
posterior |
list of simulations from the posterior distribution. |
init |
returned list of starting values. |
See Also
Examples
set.seed(1234)
library(MASS)
M <- 4 # Number of sub-groups
nvec <- round(runif(M, 100, 500))
beta <- c(.1, -.1)
Glist <- list()
dX <- matrix(0, 0, 2)
mu <- list()
nu <- list()
cst <- runif(M, -1.5, 0)
smu2 <- 0.2
snu2 <- 0.2
rho <- 0.8
Smunu <- matrix(c(smu2, rho*sqrt(smu2*snu2), rho*sqrt(smu2*snu2), snu2), 2)
for (m in 1:M) {
n <- nvec[m]
tmp <- mvrnorm(n, c(0, 0), Smunu)
mum <- tmp[,1] - mean(tmp[,1])
num <- tmp[,2] - mean(tmp[,2])
X1 <- rnorm(n, 0, 1)
X2 <- rbinom(n, 1, 0.2)
Z1 <- matrix(0, n, n)
Z2 <- matrix(0, n, n)
for (i in 1:n) {
for (j in 1:n) {
Z1[i, j] <- abs(X1[i] - X1[j])
Z2[i, j] <- 1*(X2[i] == X2[j])
}
}
Gm <- 1*((cst[m] + Z1*beta[1] + Z2*beta[2] +
kronecker(mum, t(num), "+") + rnorm(n^2)) > 0)
diag(Gm) <- 0
diag(Z1) <- NA
diag(Z2) <- NA
Z1 <- Z1[!is.na(Z1)]
Z2 <- Z2[!is.na(Z2)]
dX <- rbind(dX, cbind(Z1, Z2))
Glist[[m]] <- Gm
mu[[m]] <- mum
nu[[m]] <- num
}
mu <- unlist(mu)
nu <- unlist(nu)
out <- homophily.re(network = Glist, formula = ~ dX, group.fe = TRUE,
re.way = 2, iteration = 1e3)
# plot simulations
plot(out$posterior$beta[,1], type = "l")
abline(h = cst[1], col = "red")
plot(out$posterior$beta[,2], type = "l")
abline(h = cst[2], col = "red")
plot(out$posterior$beta[,3], type = "l")
abline(h = cst[3], col = "red")
plot(out$posterior$beta[,4], type = "l")
abline(h = cst[4], col = "red")
plot(out$posterior$beta[,5], type = "l")
abline(h = beta[1], col = "red")
plot(out$posterior$beta[,6], type = "l")
abline(h = beta[2], col = "red")
plot(out$posterior$sigma2_mu, type = "l")
abline(h = smu2, col = "red")
plot(out$posterior$sigma2_nu, type = "l")
abline(h = snu2, col = "red")
plot(out$posterior$rho, type = "l")
abline(h = rho, col = "red")
i <- 10
plot(out$posterior$mu[,i], type = "l")
abline(h = mu[i], col = "red")
plot(out$posterior$nu[,i], type = "l")
abline(h = nu[i], col = "red")