sensitivity {BuyseTest} | R Documentation |
Sensitivity Analysis for the Choice of the Thresholds
Description
Evaluate a summary statistic (net benefit, win ratio, ...) using GPC along various thresholds of clinical relevance.
Usage
sensitivity(object, ...)
## S4 method for signature 'S4BuyseTest'
sensitivity(
object,
threshold,
statistic = NULL,
band = FALSE,
conf.level = NULL,
null = NULL,
transformation = NULL,
alternative = NULL,
adj.p.value = FALSE,
trace = TRUE,
cpus = 1,
...
)
Arguments
object |
an R object of class |
... |
argument passsed to the function |
threshold |
[list] a list containing for each endpoint the thresholds to be considered. |
statistic |
[character] the statistic summarizing the pairwise comparison:
|
band |
[logical] should simulateneous confidence intervals be computed? |
conf.level |
[numeric] confidence level for the confidence intervals.
Default value read from |
null |
[numeric] right hand side of the null hypothesis (used for the computation of the p-value). |
transformation |
[logical] should the CI be computed on the logit scale / log scale for the net benefit / win ratio and backtransformed.
Otherwise they are computed without any transformation.
Default value read from |
alternative |
[character] the type of alternative hypothesis: |
adj.p.value |
[logical] should p-value adjusted for multiple comparisons be computed? |
trace |
[logical] Should the execution of the function be traced? |
cpus |
[integer, >0] the number of CPU to use. Default value is 1. |
Details
Simulateneous confidence intervals and adjusted p-values are computed using a single-step max-test approach via the function transformCIBP
of the riskRegression package.
Value
An S3 object of class S3sensitivity
.
Examples
## Not run:
require(ggplot2)
## simulate data
set.seed(10)
df.data <- simBuyseTest(1e2, n.strata = 2)
## with one endpoint
ff1 <- treatment ~ TTE(eventtime, status = status, threshold = 0.1)
BT1 <- BuyseTest(ff1, data= df.data)
se.BT1 <- sensitivity(BT1, threshold = seq(0,2,0.25), band = TRUE)
plot(se.BT1)
## with two endpoints
ff2 <- update(ff1, .~. + cont(score, threshold = 1))
BT2 <- BuyseTest(ff2, data= df.data)
se.BT2 <- sensitivity(BT2, threshold = list(eventtime = seq(0,2,0.25), score = 0:2),
band = TRUE)
plot(se.BT2)
plot(se.BT2, col = NA)
## End(Not run)