getPseudovalue {BuyseTest} | R Documentation |
Extract the pseudovalues of the Estimator
Description
Extract the pseudovalues of the estimator. The average of the pseudovalues is the estimate and their standard deviation the standard error of the estimate times a factor n (i.e. a t-test on their mean will give asymptotically valid confidence intervals and p-values).
Usage
getPseudovalue(object, statistic = NULL, endpoint = NULL)
## S4 method for signature 'S4BuyseTest'
getPseudovalue(object, statistic = NULL, endpoint = NULL)
Arguments
object |
an R object of class |
statistic |
[character] the type of statistic relative to which the pseudovalues should be computed.
Can be |
endpoint |
[character] for which endpoint(s) the pseudovalues should be output?
If |
Author(s)
Brice Ozenne
See Also
BuyseTest
for performing a generalized pairwise comparison.
S4BuyseTest-summary
for a more detailed presentation of the S4BuyseTest
object.
Examples
set.seed(10)
n <- 250
d <- simBuyseTest(n)
e.BT <- BuyseTest(treatment ~ tte(eventtime,status,2) + bin(toxicity),
data = d, trace = 0)
#### net Benefit
pseudo <- getPseudovalue(e.BT)
summary(lm(pseudo~1))$coef
## asymptotically equivalent to
confint(e.BT, transformation = TRUE)
## (small differences: small sample corrections)
summary(lm(getPseudovalue(e.BT, endpoint = 1)~1))$coef
#### win Ratio
pseudo <- getPseudovalue(e.BT, statistic = "winRatio")
summary(lm(pseudo~1))$coef ## wrong p-value (should compare to 1 instead of 0)
## asymptotically equivalent to
confint(e.BT, statistic = "winRatio", transformation = TRUE)
#### favorable
pseudo <- getPseudovalue(e.BT, statistic = "favorable")
summary(lm(pseudo~1))$coef ## wrong p-value (should compare to 1/2 instead of 0)
## asymptotically equivalent to
confint(e.BT, statistic = "favorable", transformation = TRUE)
#### unfavorable
pseudo <- getPseudovalue(e.BT, statistic = "unfavorable")
summary(lm(pseudo~1))$coef ## wrong p-value (should compare to 1/2 instead of 0)
## asymptotically equivalent to
confint(e.BT, statistic = "unfavorable", transformation = TRUE)