BuyseMultComp {BuyseTest} | R Documentation |
Adjustment for Multiple Comparisons
Description
Adjust p-values and confidence intervals estimated via GPC for multiple comparisons.
Usage
BuyseMultComp(
object,
cluster = NULL,
linfct = NULL,
rhs = NULL,
endpoint = NULL,
statistic = NULL,
cumulative = TRUE,
conf.level = NULL,
band = TRUE,
global = FALSE,
alternative = NULL,
transformation = NULL,
...
)
Arguments
object |
A BuyseTest object or a list of BuyseTest objects. All objects should contain the same endpoints. |
cluster |
[character] name of the variable identifying the observations in the dataset used by each BuyseTest model. Only relevant when using a list of BuyseTest objects to correctly combine the influence functions. If NULL, then it is assumed that the BuyseTest objects correspond to different groups of individuals. |
linfct |
[numeric matrix] a contrast matrix of size the number of endpoints times the number of BuyseTest models. |
rhs |
[numeric vector] the values for which the test statistic should be tested against. Should have the same number of rows as |
endpoint |
[character or numeric vector] the endpoint(s) to be considered. |
statistic |
[character] the statistic summarizing the pairwise comparison:
|
cumulative |
[logical] should the summary statistic be cumulated over endpoints? Otherwise display the contribution of each endpoint. |
conf.level |
[numeric] confidence level for the confidence intervals.
Default value read from |
band |
[logical] Should confidence intervals and p-values adjusted for multiple comparisons be computed. |
global |
[logical] Should global test (intersection of all null hypotheses) be made? |
alternative |
[character] the type of alternative hypothesis: |
transformation |
[logical] should the CI be computed on the logit scale / log scale for the net benefit / win ratio and backtransformed.
Otherwise they are computed without any transformation.
Default value read from |
... |
argument passsed to the function |
Details
Simulateneous confidence intervals and adjusted p-values are computed using a single-step max-test approach via the function transformCIBP
of the riskRegression package.
This corresponds to the single-step Dunnett described in Dmitrienko et al (2013) in table 2 and section 7.
Value
An S3 object of class BuyseMultComp
.
References
Dmitrienko, A. and D'Agostino, R., Sr (2013), Traditional multiplicity adjustment methods in clinical trials. Statist. Med., 32: 5172-5218. https://doi.org/10.1002/sim.5990
Examples
#### simulate data ####
set.seed(10)
df.data <- simBuyseTest(1e2, n.strata = 3)
#### adjustment for all univariate analyses ####
ff1 <- treatment ~ TTE(eventtime, status = status, threshold = 0.1)
ff2 <- update(ff1, .~. + cont(score, threshold = 1))
BT2 <- BuyseTest(ff2, data= df.data, trace = FALSE)
## (require riskRegression >= 2021.10.04 to match)
confint(BT2, cumulative = FALSE) ## not adjusted
confintAdj <- BuyseMultComp(BT2, cumulative = FALSE, endpoint = 1:2) ## adjusted
confintAdj
if(require(lava)){
cor(lava::iid(confintAdj)) ## correlation between test-statistic
}
#### 2- adjustment for multi-arm trial ####
## case where we have more than two treatment groups
## here strata will represent the treatment groups
df.data$strata <- as.character(df.data$strata)
df.data$id <- paste0("Id",1:NROW(df.data)) ## define id variable
BT1ba <- BuyseTest(strata ~ TTE(eventtime, status = status, threshold = 1),
data= df.data[strata %in% c("a","b"),], trace = FALSE)
BT1ca <- BuyseTest(strata ~ TTE(eventtime, status = status, threshold = 0.1),
data= df.data[strata %in% c("a","c"),], trace = FALSE)
BT1cb <- BuyseTest(strata ~ TTE(eventtime, status = status, threshold = 0.1),
data= df.data[strata %in% c("b","c"),], trace = FALSE)
rbind("b-a" = confint(BT1ba),
"c-a" = confint(BT1ca),
"c-b" = confint(BT1cb)) ## not adjusted
confintAdj <- BuyseMultComp(list("b-a" = BT1ba, "c-a" = BT1ca, "c-b" = BT1cb),
cluster = "id", global = TRUE)
confintAdj
if(require(lava)){
cor(lava::iid(confintAdj))
}