nested.regression {BoomSpikeSlab} | R Documentation |
Nested Regression
Description
Fits a Bayesian hierarchical regression model to data nested within groups. The model is
%
y_{ig} \sim N(x_i \beta_g, \sigma^2) \\ %
1 / \sigma^2 \sim Gamma(df/2, ss/2) \\ %
\beta_g \sim N(b, V) \\ %
Optional hyperprior distributions can be supplied to the prior parameters.
%
b ~ N(prior.mean, prior.variance) \\ %
V ~ InverseWishart(df, variance.guess). \\ %
Either hyperprior can be omitted, in which case the corresponding prior parameter is assumed fixed at the user-supplied value.
Usage
NestedRegression(response,
predictors,
group.id,
residual.precision.prior = NULL,
coefficient.prior = NULL,
coefficient.mean.hyperprior = NULL,
coefficient.variance.hyperprior = NULL,
suf = NULL,
niter,
ping = niter / 10,
sampling.method = c("ASIS", "DA"),
seed = NULL)
Arguments
response |
A numeric vector. The response variable to be modeled. |
predictors |
A numeric matrix of predictor variables, including an intercept term if one is desired. The number of rows must match length(response). |
group.id |
A factor (or object that can be converted using
|
residual.precision.prior |
An object of type
|
coefficient.prior |
An object of class MvnPrior, or |
coefficient.mean.hyperprior |
An object of class
|
coefficient.variance.hyperprior |
An object of class
|
suf |
A list, where each entry is of type
|
niter |
The desired number of MCMC iterations. |
ping |
The frequency with which to print status updates. |
sampling.method |
The MCMC sampling scheme that should be used.
If either hyperprior is set to |
seed |
The integer-valued seed (or |
Details
Note: ASIS (Yu and Meng, 2011) has slightly better MCMC convergence, but is slightly slower than the classic DA (data augmentation) method, which alternates between sampling group-level regression coefficients and prior parameters. Both methods are pretty fast.
Value
A list containing MCMC draws from the posterior distribution of model parameters. Each of the following is a vector, matrix, or array, with first index corresponding to MCMC draws, and later indices to distinct parameters.
coefficients: regression coefficients.
residual.sd: the residual standard deviation from the regression model.
prior.mean: The posterior distribution of the coefficient means across groups.
prior.variance: The posterior distribution of the variance matrix describing the distribution of regression coefficients across groups.
priors: A list of the prior distributions used to fit the model.
Author(s)
Steven L. Scott
Examples
SimulateNestedRegressionData <- function() {
beta.hyperprior.mean <- c(8, 6, 7, 5)
xdim <- length(beta.hyperprior.mean)
beta.hyperprior.variance <-
rWishart(2 * xdim, diag(rep(1, xdim)), inverse = TRUE)
number.of.groups <- 27
nobs.per.group = 23
beta <- rmvn(number.of.groups,
beta.hyperprior.mean,
beta.hyperprior.variance)
residual.sd <- 2.4
X <- cbind(1, matrix(rnorm(number.of.groups * (xdim - 1) * nobs.per.group),
ncol = xdim - 1))
group.id <- rep(1:number.of.groups, len = nrow(X))
y.hat <- numeric(nrow(X))
for (i in 1:nrow(X)) {
y.hat[i] = sum(X[i, ] * beta[group.id[i], ])
}
y <- rnorm(length(y.hat), y.hat, residual.sd)
suf <- BoomSpikeSlab:::.RegressionSufList(X, y, group.id)
return(list(beta.hyperprior.mean = beta.hyperprior.mean,
beta.hyperprior.variance = beta.hyperprior.variance,
beta = beta,
residual.sd = residual.sd,
X = X,
y = y,
group.id = group.id,
suf = suf))
}
d <- SimulateNestedRegressionData()
model <- NestedRegression(suf = d$suf, niter = 500)