inverse-wishart {Boom} | R Documentation |
Inverse Wishart Distribution
Description
Density for the inverse Wishart distribution.
Usage
dInverseWishart(Sigma, sum.of.squares, nu, logscale = FALSE,
log.det.sumsq = log(det(sum.of.squares)))
InverseWishartPrior(variance.guess, variance.guess.weight)
Arguments
Sigma |
Argument (random variable) for the inverse Wishart distribution. A positive definite matrix. |
nu |
The "degrees of freedom" parameter of the inverse Wishart
distribution. The distribution is only defined for |
sum.of.squares |
A positive definite matrix. Typically this is the sum of squares that is the sufficient statistic for the inverse Wishart distribution. |
logscale |
Logical. If |
log.det.sumsq |
The log determinant of |
variance.guess |
A prior guess at the value of the variance matrix the prior is modeling. |
variance.guess.weight |
A positive scalar indicating the number
of observations worth of weight to place on |
Details
The inverse Wishart distribution has density function
Value
dInverseWishart
returns the scalar density (or log density) at
the specified value. This function is not vectorized, so only one
random variable (matrix) can be evaluated at a time.
InverseWishartPrior
returns a list that encodes the parameters
of the distribution in a format expected by underlying C++ code.
Author(s)
Steven L. Scott steve.the.bayesian@gmail.com
See Also
dWishart
,
rWishart
,
NormalInverseWishartPrior