| inverse-wishart {Boom} | R Documentation | 
Inverse Wishart Distribution
Description
Density for the inverse Wishart distribution.
Usage
dInverseWishart(Sigma, sum.of.squares, nu, logscale = FALSE,
                log.det.sumsq = log(det(sum.of.squares)))
InverseWishartPrior(variance.guess, variance.guess.weight)
Arguments
Sigma | 
 Argument (random variable) for the inverse Wishart distribution. A positive definite matrix.  | 
nu | 
 The "degrees of freedom" parameter of the inverse Wishart
distribution.  The distribution is only defined for   | 
sum.of.squares | 
 A positive definite matrix. Typically this is the sum of squares that is the sufficient statistic for the inverse Wishart distribution.  | 
logscale | 
 Logical.  If   | 
log.det.sumsq | 
 The log determinant of   | 
variance.guess | 
 A prior guess at the value of the variance matrix the prior is modeling.  | 
variance.guess.weight | 
 A positive scalar indicating the number
of observations worth of weight to place on   | 
Details
The inverse Wishart distribution has density function
 \frac{|Sigma|^{-\frac{\nu + p + 1}{2}} \exp(-tr(\Sigma^{-1}S) / 2)}{
      2^{\frac{\nu p}{2}}|\Sigma|^{\frac{\nu}{2}}\Gamma_p(\nu / 2)}%
  
Value
dInverseWishart returns the scalar density (or log density) at
the specified value.  This function is not vectorized, so only one
random variable (matrix) can be evaluated at a time.
InverseWishartPrior returns a list that encodes the parameters
of the distribution in a format expected by underlying C++ code.  
Author(s)
Steven L. Scott steve.the.bayesian@gmail.com
See Also
dWishart,
rWishart,
NormalInverseWishartPrior