fvbmtests {BoltzMM} | R Documentation |
Hypothesis testing for a fully-visible Boltzmann machine.
Description
Tests the hypothesis that the true bias and interaction parameter values are those in nullmodel
, given data
and model
.
Usage
fvbmtests(data, model, nullmodel)
Arguments
data |
An N by n matrix, where each of the N rows contains a length n string of spin variables (i.e. each element is -1 or 1). |
model |
List generated from |
nullmodel |
A list containing two elements: a vector of length n |
Value
A list containing 4 objects: a vector containing the z-scores corresponding to the bias parameters bvec_z
,a vector containing the p-values corresponding to the bias parameters bvec_p
,a matrix containing the z-scores corresponding to the interaction parameters Mmat_z
, and a matrix containing the standard errors corresponding to the interaction parameters Mmat_p
.
Author(s)
Andrew T. Jones and Hien D. Nguyen
References
H.D. Nguyen and I.A. Wood (2016), Asymptotic normality of the maximum pseudolikelihood estimator for fully-visible Boltzmann machines, IEEE Transactions on Neural Networks and Learning Systems, vol. 27, pp. 897-902.
Examples
# Generate num=1000 random strings of n=3 binary spin variables under bvec and Mmat.
num <- 1000; bvec <- c(0,0.5,0.25); Mmat <- matrix(0.1,3,3) - diag(0.1,3,3);
data <- rfvbm(num,bvec,Mmat)
# Fit a fully visible Boltzmann machine to data, starting from parameters bvec and Mmat.
model <- fitfvbm(data,bvec,Mmat)
#Propose a null hypothesis model
nullmodel <- list(bvec = c(0,0,0), Mmat = matrix(0,3,3))
# Compute z-scores
fvbmtests(data,model,nullmodel)