fitfvbm {BoltzMM} | R Documentation |
Maximum pseudolikelihood estimation of a fully-visible Boltzmann machine.
Description
Estimates the bias vector and interaction matrix of a fully-visible Boltzmann machine via maximum pseudolikelihood estimation using an MM algorithm.
Usage
fitfvbm(data, bvec, Mmat, delta_crit = 0.001, max_it = 1000L)
Arguments
data |
An N by n matrix, where each of the N rows contains a length n string of spin variables (i.e. each element is -1 or 1). |
bvec |
Initial estimate for a vector of length n containing real valued bias parameters. |
Mmat |
Initial estimate for a symmetric n by n matrix, with zeros along the diagonal, containing the interaction parameters. |
delta_crit |
Real threshold value for the convergence criterion, based on the relative change in the Euclidean distance of parameter estimates from consecutive iterations. |
max_it |
Integer value indicating the maximum number of iterations that the algorithm is to run for. |
Value
A list containing 4 objects: the final log-pseudolikelihood value pll
, a vector containing the estimate of the bias parameters bvec
, a matrix containing the estimate of the interaction parameters Mmat
, and the number of algorithm iterations itt
.
Author(s)
Andrew T. Jones and Hien D. Nguyen
References
H.D. Nguyen and I.A. Wood (2016), A block successive lower-bound maximization algorithm for the maximum pseudolikelihood estimation of fully visible Boltzmann machines, Neural Computation, vol 28, pp. 485-492
Examples
# Generate num=1000 random strings of n=3 binary spin variables under bvec and Mmat.
num <- 1000
bvec <- c(0,0.5,0.25)
Mmat <- matrix(0.1,3,3) - diag(0.1,3,3)
data <- rfvbm(num,bvec,Mmat)
# Fit a fully visible Boltzmann machine to data, starting from parameters bvec and Mmat.
fitfvbm(data,bvec,Mmat)