OLSh {BivRegBLS} | R Documentation |
Horizontal Ordinary Least Square regression
Description
Fit a linear ordinary least square regression by minimising the residuals in a horizontal direction.
Usage
OLSh(data = NULL, xcol = 1, ycol = 2, conf.level = 0.95)
Arguments
data |
a data set (data frame or matrix). |
xcol |
a numeric vector to specify the X columns or a character vector with the column names. |
ycol |
a numeric vector to specify the Y columns or a character vector with the column names. |
conf.level |
a numeric value for the confidence level (expressed between 0 and 1). |
Details
The data argument is mandatory while other arugments are optional.
Value
A list including the following elements:
Ellipse.OLSh |
a two columns matrix with the coordinates of the joint confidence interval (confidence region) for the parameters (β, α). |
Estimate.OLSh |
a table (data frame) with the estimates of the intercept and the slope, standard error, confidence interval and pvalue (null hypothesis: slope = 1, intercept = 0). |
Note
The default value for xcol (ycol) is 1 (2) for the 1st (2nd) column. The confidence region for the OLSh parameters is 'distorted' as it results from the OLSv confidence region (ellipse).
Author(s)
Bernard G FRANCQ
References
Francq BG, Govaerts BB. Measurement methods comparison with errors-in-variables regressions. From horizontal to vertical OLS regression, review and new perspectives. Chemometrics and Intelligent Laboratory Systems 2014; 134:123-139.
Francq BG, Govaerts BB. Hyperbolic confidence bands of errors-in-variables regression lines applied to method comparison studies. Journal de la Societe Francaise de Statistique 2014; 155(1):23-45.
See Also
Examples
res.OLSh=OLSh(matrix(nrow=10,ncol=2,c((1:10)+rnorm(10),1:10)))
res.OLSh$Estimate.OLSh