ROC {BioMark} | R Documentation |
ROC curves
Description
Functions for making, plotting and analysing ROC curves.
Usage
ROC(TestResult, ...)
## Default S3 method:
ROC(TestResult, D, take.abs = TRUE, ...)
## S3 method for class 'ROC'
plot(x, type = "b", null.line = TRUE,
xlab = "False Pos. Rate", ylab = "True Pos. Rate",
xlim = c(0, 1), ylim = c(0, 1), main = "ROC", ...)
## S3 method for class 'ROC'
points(x, ...)
## S3 method for class 'ROC'
lines(x, ...)
## S3 method for class 'ROC'
identify(x, labels = NULL, ..., digits = 1)
## S3 method for class 'ROC'
print(x, ...)
roc.value(found, true, totalN)
AUC(x, max.mspec)
Arguments
TestResult |
Typically regression coefficients or t statistics. Note that when p values are used directly, the least significant values would be selected first. In this case one should use 1/p. |
D |
True, known, differences, either expressed as a vector of 0
and 1 of the same length as |
take.abs |
Logical, indicating whether to take absolute values of the test statistic. |
x |
An object of class ROC. |
type , xlab , ylab , xlim , ylim , main , labels , digits |
Standard
arguments to functions like |
null.line |
Logical, whether to draw the line y = x, corresponding to random guessing. |
max.mspec |
Maximal value of the True Positive Rate to consider in AUC calculations. Setting this to a value smaller than one (which is the default) leads to a partial AUC value, which may in many cases be more useful. |
found |
The indices of the coefficients identified with a biomarker identification method. |
true |
The indices of the true biomarkers. |
totalN |
The total number of variables to choose from. |
... |
Further arguments, especially useful in the plotting functions. |
Value
Function ROC
returns a list with elements:
sensSensitivity, or True Positive Rate (TPR).
mspec1 - Specificity, or False Positive Rate (FPR).
testlevels of the test statistic.
callFunction call.
Function roc.value
returns a list with elements sens
and
mspec
, i.e., one point on a ROC curve.
Function AUC
returns the area under the curve, measured up to the
value of max.mspec
- if the latter is smaller than 1, it is a
partial AUC curve.
Author(s)
Ron Wehrens
References
T. Lumley: ROC curves - in Programme's Niche, R News 4/1, June 2004.
Examples
data(spikedApples)
apple.coef <- get.biom(X = spikedApples$dataMatrix,
Y = rep(1:2, each = 10),
fmethod = "vip",
ncomp = 3, type = "coef")
## ROC curve for all VIP values, ordered according to size
true.biom <- (1:ncol(spikedApples$dataMatrix) %in% spikedApples$biom)
vip.roc <- ROC(apple.coef$vip, true.biom)
plot(vip.roc)
## Add stability-based selection point
apple.stab <- get.biom(X = spikedApples$dataMatrix,
Y = rep(1:2, each = 10),
fmethod = "vip",
ncomp = 3, type = "stab")
stab.roc <- roc.value(apple.stab$vip[[1]]$biom.indices,
spikedApples$biom,
totalN = ncol(spikedApples$dataMatrix))
points(stab.roc, col = "red", pch = 19, cex = 1.5)
## Not run:
## Add HC-based selection point
## Attention: takes approx. 2 minutes on my PC
apple.HC <- get.biom(X = spikedApples$dataMatrix,
Y = rep(1:2, each = 10),
fmethod = "vip",
ncomp = 3, type = "HC")
HC.roc <- roc.value(apple.HC$vip$biom.indices,
spikedApples$biom,
totalN = ncol(spikedApples$dataMatrix))
points(HC.roc, col = "blue", pch = 19, cex = 1.5)
## End(Not run)