baseModel {BioM2} | R Documentation |
Prediction by Machine Learning
Description
Prediction by Machine Learning with different learners ( From 'mlr3' )
Usage
baseModel(
trainData,
testData,
predMode = "probability",
classifier,
paramlist = NULL,
inner_folds = 10
)
Arguments
trainData |
The input training dataset. The first column is the label or the output. For binary classes, 0 and 1 are used to indicate the class member. |
testData |
The input test dataset. The first column is the label or the output. For binary classes, 0 and 1 are used to indicate the class member. |
predMode |
The prediction mode. Available options are c('probability', 'classification'). |
classifier |
Learners in mlr3 |
paramlist |
Learner parameters |
inner_folds |
k-fold cross validation ( Only supported when testData = NULL ) |
Value
The predicted output for the test data.
Author(s)
Shunjie Zhang
Examples
library(mlr3verse)
library(caret)
library(BioM2)
data=MethylData_Test
set.seed(1)
part=unlist(createDataPartition(data$label,p=0.8))#Split data
predict=baseModel(trainData=data[part,1:10],
testData=data[-part,1:10],
classifier = 'svm')#Use 10 features to make predictions,Learner uses svm
[Package BioM2 version 1.0.8 Index]