predict.BinaryEPPM {BinaryEPPM} | R Documentation |
Prediction Method for BinaryEPPM Objects
Description
Extract various types of predictions from BinaryEPPM regression models.
Usage
## S3 method for class 'BinaryEPPM'
predict(object, newdata = NULL, type = c("response",
"linear.predictor.p", "linear.predictor.scale.factor",
"p", "scale.factor", "scale.factor.limits", "mean",
"variance", "distribution", "distribution.parameters"), na.action = na.pass, ...)
Arguments
object |
fitted model object of class "BinaryEPPM". |
newdata |
optionally, a data frame in which to look for variables with which to predict. If omitted, the original observations are used. |
type |
character indicating type of predictions: fitted means of responses ("response"), linear predictors ("linear.predictor.p", "linear.predictor.scale.factor"), fitted value of probability of success ("p"), fitted value of scale-factor ("scale.factor"), fitted value of mean ("mean"), scale factor limits ("scale.factor.limits"), fitted value of variance ("variance"), fitted probability distribution ("distribution"), parameters of fitted distributions ("distribution.parameters") |
na.action |
function determining what should be done with missing values in newdata. The default is to predict NA. |
... |
some methods for this generic function require additional arguments. |
Value
A vector or list of the predicted values from the fitted model object.
Author(s)
David M. Smith <dmccsmith@verizon.net>
References
Cribari-Neto F, Zeileis A. (2010). Beta Regression in R. Journal of Statistical Software, 34(2), 1-24. doi:10.18637/jss.v034.i02.
See Also
Examples
data("ropespores.case")
output.fn <- BinaryEPPM(data = ropespores.case,
number.spores / number.tested ~ 1 + offset(logdilution),
model.type = 'p only', model.name = 'binomial')
predict(output.fn, type = "response")
predict(output.fn, type = "linear.predictor.p")