plot_posterior_rt {Bernadette} | R Documentation |
Plot the estimated effective reproduction number trajectory
Description
Plot the estimated effective reproduction number trajectory
Usage
plot_posterior_rt(object, xlab = NULL, ylab = NULL, ...)
Arguments
object |
A data frame from |
xlab |
character; Title of x-axis. |
ylab |
character; Title of y-axis. |
... |
Optional arguments passed to |
Value
A ggplot
object which can be further customised using the ggplot2 package.
See Also
Examples
# Age-specific mortality/incidence count time series:
data(age_specific_mortality_counts)
data(age_specific_cusum_infection_counts)
# Import the age distribution for Greece in 2020:
age_distr <- age_distribution(country = "Greece", year = 2020)
# Lookup table:
lookup_table <- data.frame(Initial = age_distr$AgeGrp,
Mapping = c(rep("0-39", 8),
rep("40-64", 5),
rep("65+" , 3)))
# Aggregate the age distribution table:
aggr_age <- aggregate_age_distribution(age_distr, lookup_table)
# Import the projected contact matrix for Greece:
conmat <- contact_matrix(country = "GRC")
# Aggregate the contact matrix:
aggr_cm <- aggregate_contact_matrix(conmat, lookup_table, aggr_age)
# Aggregate the IFR:
ifr_mapping <- c(rep("0-39", 8), rep("40-64", 5), rep("65+", 3))
aggr_age_ifr <- aggregate_ifr_react(age_distr, ifr_mapping, age_specific_cusum_infection_counts)
# Infection-to-death distribution:
ditd <- itd_distribution(ts_length = nrow(age_specific_mortality_counts),
gamma_mean = 24.19231,
gamma_cv = 0.3987261)
# Posterior sampling:
rstan::rstan_options(auto_write = TRUE)
chains <- 1
options(mc.cores = chains)
igbm_fit <- stan_igbm(y_data = age_specific_mortality_counts,
contact_matrix = aggr_cm,
age_distribution_population = aggr_age,
age_specific_ifr = aggr_age_ifr[[3]],
itd_distr = ditd,
incubation_period = 3,
infectious_period = 4,
likelihood_variance_type = "linear",
ecr_changes = 7,
prior_scale_x0 = 1,
prior_scale_x1 = 1,
prior_scale_contactmatrix = 0.05,
pi_perc = 0.1,
prior_volatility = normal(location = 0, scale = 1),
prior_nb_dispersion = exponential(rate = 1/5),
algorithm_inference = "sampling",
nBurn = 10,
nPost = 30,
nThin = 1,
chains = chains,
adapt_delta = 0.6,
max_treedepth = 14,
seed = 1)
post_rt_summary <- posterior_rt(object = igbm_fit,
y_data = age_specific_mortality_counts,
age_distribution_population = aggr_age,
infectious_period = 4)
# Visualise the posterior distribution of the effective reproduction number:
plot_posterior_rt(post_rt_summary)
[Package Bernadette version 1.1.5 Index]