signifd.analysis {BenfordTests} | R Documentation |
Graphical Analysis of First Significant Digits
Description
signifd.analysis
takes any numerical vector reduces the sample to the specified number of significant digits. The (relative) frequencies are then plotted so that a subjective analysis may be performed.
Usage
signifd.analysis(x = NULL, digits = 1, graphical_analysis = TRUE, freq = FALSE,
alphas = 20, tick_col = "red", ci_col = "darkgreen", ci_lines = c(.05))
Arguments
x |
A numeric vector. |
digits |
An integer determining the number of first digits to use for testing, i.e. 1 for only the first, 2 for the first two etc. |
graphical_analysis |
Boolean value indicating if results should be plotted. |
freq |
Boolean value indicating if absolute frequencies should be used. |
alphas |
Either a vector containing the significance levels([0,1]) that will be shaded, or an integer defining the number of evenly spaced confidence intervals. |
tick_col |
Color code or name that will be passed to " |
ci_col |
Color code or name that will be passed to " |
ci_lines |
Boolean or fractional value(s) indicating significance levels where lines are drawn |
Details
Confidence intervals are calculated from the normal distribution with \mu_i = np_i
and \sigma^2 = np_i(1-p_i)
, where i represents the considered digit. Be aware that the normal approximation only holds for "large" n.
Value
A list containing the following components:
summary |
the summary printed below the graph, a matrix of digits, their (relative) frequencies and individual p-values |
CIs |
confidence intervals used for plotting as defined by parameter " |
Author(s)
Dieter William Joenssen Dieter.Joenssen@googlemail.com
References
Benford, F. (1938) The Law of Anomalous Numbers. Proceedings of the American Philosophical Society. 78, 551–572.
Freedman, L.S. (1981) Watson's Un2 Statistic for a Discrete Distribution. Biometrika. 68, 708–711.
See Also
Examples
#Set the random seed to an arbitrary number
set.seed(421)
#Create a sample satisfying Benford's law
X<-rbenf(n=20)
#Analyze the first digits using the the defaults
signifd.analysis(X)
#Turn off plot
signifd.analysis(X,graphical_analysis=FALSE)
#Use absolute frequencies
signifd.analysis(X,graphical_analysis=FALSE,freq=TRUE)
#Use five evenly spaced confidence intervals, no lines
#alphas is used for shadeing
signifd.analysis(X,graphical_analysis=TRUE,alphas=5,freq=TRUE,ci_lines=FALSE)
#Use fifty evenly spaced, gray confidence intervals, blue ticks, and lines at
#the 1 and 5 percent confidence intervals
signifd.analysis(X,graphical_analysis=TRUE,alphas=50,freq=TRUE,tick_col="blue",
ci_col="gray",ci_lines=c(.01,.05))