createTruncatedNormalPrior {BayesianTools} | R Documentation |
Convenience function to create a truncated normal prior
Description
Convenience function to create a truncated normal prior
Usage
createTruncatedNormalPrior(mean, sd, lower, upper)
Arguments
mean |
best estimate for each parameter |
sd |
sdandard deviation |
lower |
vector of lower prior range for all parameters |
upper |
vector of upper prior range for all parameters |
Note
for details see createPrior
Author(s)
Florian Hartig
See Also
createPriorDensity
createPrior
createBetaPrior
createUniformPrior
createBayesianSetup
Examples
# the BT package includes a number of convenience functions to specify
# prior distributions, including createUniformPrior, createTruncatedNormalPrior
# etc. If you want to specify a prior that corresponds to one of these
# distributions, you should use these functions, e.g.:
prior <- createUniformPrior(lower = c(0,0), upper = c(0.4,5))
prior$density(c(2, 3)) # outside of limits -> -Inf
prior$density(c(0.2, 2)) # within limits, -0.6931472
# All default priors include a sampling function, i.e. you can create
# samples from the prior via
prior$sampler()
# [1] 0.2291413 4.5410389
# if you want to specify a prior that does not have a default function,
# you should use the createPrior function, which expects a density and
# optionally a sampler function:
density = function(par){
d1 = dunif(par[1], -2,6, log =TRUE)
d2 = dnorm(par[2], mean= 2, sd = 3, log =TRUE)
return(d1 + d2)
}
sampler = function(n=1){
d1 = runif(n, -2,6)
d2 = rnorm(n, mean= 2, sd = 3)
return(cbind(d1,d2))
}
prior <- createPrior(density = density, sampler = sampler,
lower = c(-10,-20), upper = c(10,20), best = NULL)
# note that the createPrior supports additional truncation
# To use a prior in an MCMC, include it in a BayesianSetup
set.seed(123)
ll <- function(x) sum(dnorm(x, log = TRUE)) # multivariate normal ll
bayesianSetup <- createBayesianSetup(likelihood = ll, prior = prior)
settings = list(iterations = 100)
out <- runMCMC(bayesianSetup = bayesianSetup, settings = settings)
# use createPriorDensity to create a new (estimated) prior from MCMC output
newPrior = createPriorDensity(out, method = "multivariate",
eps = 1e-10, lower = c(-10,-20),
upper = c(10,20), best = NULL, scaling = 0.5)
[Package BayesianTools version 0.1.8 Index]