applySettingsDefault |
Provides the default settings for the different samplers in runMCMC |
BayesianTools |
BayesianTools |
calibrationTest |
Simulation-based calibration tests |
checkBayesianSetup |
Checks if an object is of class 'BayesianSetup' |
convertCoda |
Convert coda::mcmc objects to BayesianTools::mcmcSampler |
correlationPlot |
Flexible function to create correlation density plots |
createBayesianSetup |
Creates a standardized collection of prior, likelihood and posterior functions, including error checks etc. |
createBetaPrior |
Convenience function to create a beta prior |
createLikelihood |
Creates a standardized likelihood class#' |
createMcmcSamplerList |
Convenience function to create an object of class mcmcSamplerList from a list of mcmc samplers |
createMixWithDefaults |
Allows to mix a given parameter vector with a default parameter vector |
createPosterior |
Creates a standardized posterior class |
createPrior |
Creates a standardized prior class |
createPriorDensity |
Fits a density function to a multivariate sample |
createProposalGenerator |
Factory that creates a proposal generator |
createSmcSamplerList |
Convenience function to create an object of class SMCSamplerList from a list of mcmc samplers |
createTruncatedNormalPrior |
Convenience function to create a truncated normal prior |
createUniformPrior |
Convenience function to create a simple uniform prior distribution |
DE |
Differential-Evolution MCMC |
DEzs |
Differential-Evolution MCMC zs |
DIC |
Deviance information criterion |
DREAM |
DREAM |
DREAMzs |
DREAMzs |
gelmanDiagnostics |
Gelman Diagnostics |
generateParallelExecuter |
Factory to generate a parallel executor of an existing function |
generateTestDensityMultiNormal |
Multivariate normal likelihood |
getCredibleIntervals |
Calculate confidence region from an MCMC or similar sample |
getDharmaResiduals |
Creates a DHARMa object |
getPanels |
getPanels |
getPossibleSamplerTypes |
Returns possible sampler types |
getPredictiveDistribution |
Calculates predictive distribution based on the parameters |
getPredictiveIntervals |
Calculates Bayesian credible (confidence) and predictive intervals based on parameter sample |
getSample |
Extracts the sample from a bayesianOutput |
getSample.data.frame |
Extracts the sample from a bayesianOutput |
getSample.double |
Extracts the sample from a bayesianOutput |
getSample.integer |
Extracts the sample from a bayesianOutput |
getSample.list |
Extracts the sample from a bayesianOutput |
getSample.matrix |
Extracts the sample from a bayesianOutput |
getSample.MCMC |
Extracts the sample from a bayesianOutput |
getSample.mcmc |
Extracts the sample from a bayesianOutput |
getSample.mcmc.list |
Extracts the sample from a bayesianOutput |
getSample.MCMC_refClass |
Extracts the sample from a bayesianOutput |
getVolume |
Calculate posterior volume |
GOF |
Standard GOF metrics Startvalues for sampling with nrChains > 1 : if you want to provide different start values for the different chains, provide a list |
likelihoodAR1 |
AR1 type likelihood function |
likelihoodIidNormal |
Normal / Gaussian Likelihood function |
MAP |
calculates the Maxiumum APosteriori value (MAP) |
marginalLikelihood |
Calcluated the marginal likelihood from a set of MCMC samples |
marginalPlot |
Plot MCMC marginals |
mergeChains |
Merge Chains |
Metropolis |
Creates a Metropolis-type MCMC with options for covariance adaptatin, delayed rejection, Metropolis-within-Gibbs, and tempering |
plotDiagnostic |
Diagnostic Plot |
plotSensitivity |
Performs a one-factor-at-a-time sensitivity analysis for the posterior of a given bayesianSetup within the prior range. |
plotTimeSeries |
Plots a time series, with the option to include confidence and prediction band |
plotTimeSeriesResiduals |
Plots residuals of a time series |
plotTimeSeriesResults |
Creates a time series plot typical for an MCMC / SMC fit |
runMCMC |
Main wrapper function to start MCMCs, particle MCMCs and SMCs |
smcSampler |
SMC sampler |
stopParallel |
Function to close cluster in BayesianSetup |
testDensityBanana |
Banana-shaped density function |
testDensityGelmanMeng |
GelmanMeng test function |
testDensityInfinity |
Test function infinity ragged |
testDensityMultiNormal |
3d Mutivariate Normal likelihood |
testDensityNormal |
Normal likelihood |
testLinearModel |
Fake model, returns a ax + b linear response to 2-param vector |
tracePlot |
Trace plot for MCMC class |
Twalk |
T-walk MCMC |
updateProposalGenerator |
To update settings of an existing proposal genenerator |
VSEM |
Very simple ecosystem model |
vsemC |
C version of the VSEM model |
VSEMcreateLikelihood |
Create an example dataset, and from that a likelihood or posterior for the VSEM model |
VSEMcreatePAR |
Create a random radiation (PAR) time series |
VSEMgetDefaults |
returns the default values for the VSEM |
WAIC |
calculates the WAIC |