simulatetrial {BayesianPlatformDesignTimeTrend} | R Documentation |
simulatetrial
Description
This function simulates a MAMS trial applying adaptive methods where the time trend effect can be studied.
Usage
simulatetrial(
ii,
response.probs = c(0.4, 0.4),
ns = c(30, 60, 90, 120, 150),
test.type = "Twoside",
max.ar = 0.75,
rand.algo = "Urn",
max.deviation = 3,
model.inf = list(model = "tlr", ibb.inf = list(pi.star = 0.5, pess = 2,
betabinomialmodel = ibetabinomial.post), tlr.inf = list(beta0_prior_mu = 0,
beta1_prior_mu = 0, beta0_prior_sigma = 2.5, beta1_prior_sigma = 2.5, beta0_df = 7,
beta1_df = 7, reg.inf = "main", variable.inf = "Fixeffect")),
Stopbound.inf = Stopbound.inf,
Random.inf = Random.inf,
trend.inf = trend.inf
)
Arguments
ii |
Meaning less parameter but required for foreach function in doParallel package |
response.probs |
A vector of true response probability for each arm. Default response.probs = c(0.4, 0.4). |
ns |
A vector of accumulated number of patient at each stage. Default is ns = c(30, 60, 90, 120, 150). |
test.type |
A indicator of whether to use one side test or two side test for each treatment-control comparison. |
max.ar |
The upper boundary for randomisation ratio for each arm. Default is 0.75 for a two arm trial. The minimum value depends on K where 1 - max.ar <= 1/K |
rand.algo |
The method of applying patient allocation with a given randomisation probability vector. Default is "Urn". |
max.deviation |
The tuning parameter for Urn randomisation method. Default is 3. |
model.inf |
The list of interim data analysis model information for more see |
Stopbound.inf |
The list of stop boundary information for more see |
Random.inf |
The list of Adaptive randomisation information for more see |
trend.inf |
The list of time trend information |
Value
A matrix including all evaluation metrics
Author(s)
Ziyan Wang
Examples
set.seed(1)
simulatetrial(response.probs = c(0.4, 0.4),
ns = c(30, 60, 90, 120, 150),
max.ar = 0.75,
test.type = "Twoside",
rand.algo = "Urn",
max.deviation = 3,
model.inf = list(
model = "tlr",
ibb.inf = list(
pi.star = 0.5,
pess = 2,
betabinomialmodel = ibetabinomial.post
),
tlr.inf = list(
beta0_prior_mu = 0,
beta1_prior_mu = 0,
beta0_prior_sigma = 2.5,
beta1_prior_sigma = 2.5,
beta0_df = 7,
beta1_df = 7,
reg.inf = "main",
variable.inf = "Fixeffect"
)
),
Stopbound.inf = Stopboundinf(
Stop.type = "Early-Pocock",
Boundary.type = "Symmetric",
cutoff = c(0.99,0.01)
),
Random.inf = list(
Fixratio = FALSE,
Fixratiocontrol = NA,
BARmethod = "Thall",
Thall.tuning.inf = list(tuningparameter = "Fixed", fixvalue = 1),
Trippa.tuning.inf = list(a = 10, b = 0.75)
),
trend.inf = list(
trend.type = "step",
trend.effect = c(0, 0),
trend_add_or_multip = "mult"
))