| demo_Cutoffscreening {BayesianPlatformDesignTimeTrend} | R Documentation | 
demo_Cutoffscreening
Description
This function does a cutoff screening for trial simulation.
Usage
demo_Cutoffscreening(
  ntrials = 1000,
  trial.fun = simulatetrial,
  grid.inf = list(start = c(0.9, 0.95, 1), extendlength = 15),
  input.info = list(response.probs = c(0.4, 0.4), ns = c(30, 60, 90, 120, 150), max.ar =
    0.75, rand.algo = "Urn", max.deviation = 3, test.type = "Twoside", model.inf =
    list(model = "tlr", ibb.inf = list(pi.star = 0.5, pess = 2, betabinomialmodel =
    ibetabinomial.post), tlr.inf = list(beta0_prior_mu = 0, beta1_prior_mu = 0,
    beta0_prior_sigma = 2.5, beta1_prior_sigma = 2.5, beta0_df = 7, beta1_df = 7, reg.inf
    = "main", variable.inf = "Fixeffect")), Stop.type = "Early-Pocock", Boundary.type =
    "Symmetric", Random.inf = list(Fixratio = FALSE, 
     Fixratiocontrol = NA,
    BARmethod = "Thall", Thall.tuning.inf = list(tuningparameter = "Fixed", fixvalue =
    1)), trend.inf = list(trend.type = "step", trend.effect = c(0, 0),
    trend_add_or_multip = "mult")),
  cl = 2
)
Arguments
| ntrials | A numeric variable indicating how many trial replicates you want to run | 
| trial.fun | The function of trial simulation, related to MainFunction.R | 
| grid.inf | A list of grid information to create start grid and extend grid for cutoff screening. | 
| input.info | A list of input information including all information required for trial simulation. | 
| cl | A numeric variable indicating how many cores you want to use in parallel programming. | 
Value
A vector of recommended cutoff. The final value is the latest recommended value. A plot for all tested cutoff and error rate
Author(s)
Ziyan Wang
Examples
demo_Cutoffscreening(ntrials = 2, cl = 2,
    grid.inf = list(start = c(0.9, 0.95, 1), extendlength = 2))
[Package BayesianPlatformDesignTimeTrend version 1.2.3 Index]