plotManhattan {BayesSUR} | R Documentation |
plot Manhattan-like plots
Description
Plot Manhattan-like plots for marginal posterior inclusion probabilities
(mPIP) and numbers of responses of association for predictors of a
BayesSUR
class object.
Usage
plotManhattan(
x,
manhattan = c("mPIP", "numResponse"),
x.loc = FALSE,
axis.label = "auto",
mark.responses = NULL,
xlab1 = "Predictors",
ylab1 = "mPIP",
xlab2 = "Predictors",
ylab2 = "No. of responses",
threshold = 0.5,
las = 0,
cex.axis = 1,
mark.pos = c(0, 0),
mark.color = 2,
mark.cex = 0.8,
header = "",
...
)
Arguments
x |
an object of class |
manhattan |
value(s) in |
x.loc |
a vector of features distance |
axis.label |
a vector of predictor names which are shown in the
Manhattan-like plot. The value |
mark.responses |
a vector of response names which are shown in the Manhattan-like plot for the mPIP |
xlab1 |
a title for the x axis of Manhattan-like plot for the mPIP |
ylab1 |
a title for the y axis of Manhattan-like plot for the mPIP |
xlab2 |
a title for the x axis of Manhattan-like plot for the numbers of responses |
ylab2 |
a title for the y axis of Manhattan-like plot for the numbers of responses |
threshold |
threshold for showing number of response variables significantly associated with each feature |
las |
graphical parameter of plot.default |
cex.axis |
graphical parameter of plot.default |
mark.pos |
the location of the marked text relative to the point |
mark.color |
the color of the marked text. The default color is red. |
mark.cex |
the fontsize of the marked text. The default fontsize is 0.8 |
header |
the main title |
... |
other arguments |
Examples
data("exampleEQTL", package = "BayesSUR")
hyperpar <- list(a_w = 2, b_w = 5)
set.seed(9173)
fit <- BayesSUR(
Y = exampleEQTL[["blockList"]][[1]],
X = exampleEQTL[["blockList"]][[2]],
data = exampleEQTL[["data"]], outFilePath = tempdir(),
nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot",
hyperpar = hyperpar, tmpFolder = "tmp/"
)
## check output
# show the Manhattan-like plots
plotManhattan(fit)