plotCPO {BayesSUR} | R Documentation |
plot conditional predictive ordinate
Description
Plot the conditional predictive ordinate (CPO) for each individual of a
fitted model generated by BayesSUR
which is a BayesSUR
object.
CPO is a handy posterior predictive check because it may be used to identify
outliers, influential observations, and for hypothesis testing across
different non-nested models (Gelfand 1996).
Usage
plotCPO(
x,
outlier.mark = TRUE,
outlier.thresh = 0.01,
scale.CPO = TRUE,
x.loc = FALSE,
axis.label = NULL,
las = 0,
cex.axis = 1,
mark.pos = c(0, -0.01),
mark.color = 2,
mark.cex = 0.8,
xlab = "Observations",
ylab = NULL,
...
)
Arguments
x |
an object of class |
outlier.mark |
mark the outliers with the response names.
The default is |
outlier.thresh |
threshold for the CPOs. The default is 0.01. |
scale.CPO |
scaled CPOs which is divided by their maximum.
The default is |
x.loc |
a vector of features distance |
axis.label |
a vector of predictor names which are shown in CPO plot.
The default is |
las |
graphical parameter of plot.default |
cex.axis |
graphical parameter of plot.default |
mark.pos |
location of the marked text relative to the point |
mark.color |
color of the marked text. The default color is red |
mark.cex |
font size of the marked text. The default font size is 0.8 |
xlab |
a title for the x axis |
ylab |
a title for the y axis |
... |
other arguments |
Details
The default threshold for the CPOs to detect the outliers is 0.01
by Congdon (2005). It can be tuned by the argument outlier.thresh
.
References
Statisticat, LLC (2013). Bayesian Inference. Farmington, CT: Statisticat, LLC.
Gelfand A. (1996). Model Determination Using Sampling Based Methods. In Gilks W., Richardson S., Spiegelhalter D. (eds.), Markov Chain Monte Carlo in Practice, pp. 145–161. Chapman & Hall, Boca Raton, FL.
Congdon P. (2005). Bayesian Models for Categorical Data. John Wiley & Sons, West Sussex, England.
Examples
data("exampleEQTL", package = "BayesSUR")
hyperpar <- list(a_w = 2, b_w = 5)
set.seed(9173)
fit <- BayesSUR(
Y = exampleEQTL[["blockList"]][[1]],
X = exampleEQTL[["blockList"]][[2]],
data = exampleEQTL[["data"]], outFilePath = tempdir(),
nIter = 10, burnin = 0, nChains = 1, gammaPrior = "hotspot",
hyperpar = hyperpar, tmpFolder = "tmp/", output_CPO = TRUE
)
## check output
# plot the conditional predictive ordinate (CPO)
plotCPO(fit)