SummaryMarginals {BayesNetBP} | R Documentation |
Summary a continuous marginal distribution
Description
This function summary the marginal distributions of continuous variables by outputing the mean, standard deviation, and number of subpopulations
Usage
SummaryMarginals(marginals)
Arguments
marginals |
the marginal distributions obtained from |
Value
a data.frame
object containing information about the marginal distributions for continuous variables.
The marginal distributions of continous variables in a CG-BN model are mixtures of Gaussian distributions.
Therefore, besides the mean and standard deviation, the object has an additional column to specify the number of Gaussian
mixtures.
mean
the mean value of a Gaussian distribution.
sd
the standard deviation of a Gaussian distribution.
n
the number of Gaussian distributions in the mixture.
References
Cowell, R. G. (2005). Local propagation in conditional Gaussian Bayesian networks.
Journal of Machine Learning Research, 6(Sep), 1517-1550.
Yu H, Moharil J, Blair RH (2020). BayesNetBP: An R Package for Probabilistic Reasoning in Bayesian
Networks. Journal of Statistical Software, 94(3), 1-31. <doi:10.18637/jss.v094.i03>.
See Also
Examples
data(liver)
tree.init.p <- Initializer(dag=liver$dag, data=liver$data,
node.class=liver$node.class,
propagate = TRUE)
marg <- Marginals(tree.init.p, c("HDL", "Ppap2a", "Neu1"))
SummaryMarginals(marginals=marg)