| LocalModelCompile {BayesNetBP} | R Documentation | 
Model compilation
Description
Compile the local models
Usage
LocalModelCompile(data, dag = NULL, node.class = NULL)
Arguments
| data | a  | 
| dag | 
 | 
| node.class | 
 | 
Details
This function compiles the local models, including the conditional
probability tables for discrete variables, and linear predictor potentials
for continuous variables. The qtlnet and qtl package need to be installed if data is
a qtlnet object.
Value
- pots
- a - listof discrete potentials (conditional probability tables) for each discrete variable.
- bags
- a - listof sets of continuous potentials (lppotentials), each set for a continuous variables.
Author(s)
Han Yu
References
Cowell, R. G. (2005). Local propagation in conditional Gaussian Bayesian networks.
Journal of Machine Learning Research, 6(Sep), 1517-1550. 
Yu H, Moharil J, Blair RH (2020). BayesNetBP: An R Package for Probabilistic Reasoning in Bayesian
Networks. Journal of Statistical Software, 94(3), 1-31. <doi:10.18637/jss.v094.i03>.
See Also
Examples
data(liver)
models <- LocalModelCompile(data=liver$data, dag=liver$dag, node.class=liver$node.class)