inverseEigen {BayesNSGP} | R Documentation |
Calculate covariance elements based on eigendecomposition components
Description
inverseEigen
calculates the inverse eigendecomposition – in other
words, the covariance elements based on the eigenvalues and vectors. For a
2x2 anisotropy (covariance) matrix, we parameterize the three unique values
in terms of the two log eigenvalues and a rotation parameter on the
rescaled logit. The function is coded as a nimbleFunction
(see the
nimble
package) but can also be used as a regular R function.
Usage
inverseEigen(eigen_comp1, eigen_comp2, eigen_comp3, which_Sigma)
Arguments
eigen_comp1 |
N-vector; contains values of the log of the first anisotropy eigenvalue for a set of locations. |
eigen_comp2 |
N-vector; contains values of the log of the second anisotropy eigenvalue for a set of locations. |
eigen_comp3 |
N-vector; contains values of the rescaled logit of the anisotropy rotation for a set of locations. |
which_Sigma |
Scalar; one of |
Value
A vector of anisotropy values (Sigma11, Sigma22, or Sigma12; depends
on which_Sigma
) for the corresponding set of locations.
Examples
# Generate some eigendecomposition elements (all three are real-valued)
eigen_comp1 <- rnorm(10)
eigen_comp2 <- rnorm(10)
eigen_comp3 <- rnorm(10)
inverseEigen( eigen_comp1, eigen_comp2, eigen_comp3, 2) # Return the Sigma22 values