| calculateAD_ns {BayesNSGP} | R Documentation | 
Calculate A and D matrices for the NNGP approximation
Description
calculateAD_ns calculates A and D matrices (the Cholesky of the 
precision matrix) needed for the NNGP approximation.
Usage
calculateAD_ns(
  dist1_3d,
  dist2_3d,
  dist12_3d,
  Sigma11,
  Sigma22,
  Sigma12,
  log_sigma_vec,
  log_tau_vec,
  nID,
  N,
  k,
  nu,
  d
)
Arguments
dist1_3d | 
 N x (k+1) x (k+1) array of distances in the x-coordinate direction.  | 
dist2_3d | 
 N x (k+1) x (k+1) array of distances in the y-coordinate direction.  | 
dist12_3d | 
 N x (k+1) x (k+1) array of cross-distances.  | 
Sigma11 | 
 N-vector; 1-1 element of the Sigma() process.  | 
Sigma22 | 
 N-vector; 2-2 element of the Sigma() process.  | 
Sigma12 | 
 N-vector; 1-2 element of the Sigma() process.  | 
log_sigma_vec | 
 N-vector; process standard deviation values.  | 
log_tau_vec | 
 N-vector; nugget standard deviation values.  | 
nID | 
 N x k matrix of neighbor indices.  | 
N | 
 Scalar; number of data measurements.  | 
k | 
 Scalar; number of nearest neighbors.  | 
nu | 
 Scalar; Matern smoothness parameter.  | 
d | 
 Scalar; dimension of the spatial domain.  | 
Value
A N x (k+1) matrix; the first k columns are the 'A' matrix, and the last column is the 'D' vector.