calculateAD_ns {BayesNSGP} | R Documentation |
Calculate A and D matrices for the NNGP approximation
Description
calculateAD_ns
calculates A and D matrices (the Cholesky of the
precision matrix) needed for the NNGP approximation.
Usage
calculateAD_ns(
dist1_3d,
dist2_3d,
dist12_3d,
Sigma11,
Sigma22,
Sigma12,
log_sigma_vec,
log_tau_vec,
nID,
N,
k,
nu,
d
)
Arguments
dist1_3d |
N x (k+1) x (k+1) array of distances in the x-coordinate direction. |
dist2_3d |
N x (k+1) x (k+1) array of distances in the y-coordinate direction. |
dist12_3d |
N x (k+1) x (k+1) array of cross-distances. |
Sigma11 |
N-vector; 1-1 element of the Sigma() process. |
Sigma22 |
N-vector; 2-2 element of the Sigma() process. |
Sigma12 |
N-vector; 1-2 element of the Sigma() process. |
log_sigma_vec |
N-vector; process standard deviation values. |
log_tau_vec |
N-vector; nugget standard deviation values. |
nID |
N x k matrix of neighbor indices. |
N |
Scalar; number of data measurements. |
k |
Scalar; number of nearest neighbors. |
nu |
Scalar; Matern smoothness parameter. |
d |
Scalar; dimension of the spatial domain. |
Value
A N x (k+1) matrix; the first k columns are the 'A' matrix, and the last column is the 'D' vector.