gMLE.bb {BayesGOF} | R Documentation |
Beta-Binomial Parameter Estimation
Description
Computes type-II Maximum likelihood estimates \hat{\alpha}
and \hat{\beta}
for Beta prior g\sim
Beta(\alpha,\beta)
.
Usage
gMLE.bb(success, trials, start = NULL, optim.method = "default",
lower = 0, upper = Inf)
Arguments
success |
Vector containing the number of successes. |
trials |
Vector containing the total number of trials that correspond to the successes. |
start |
initial parameters; default is NULL which allows function to determine MoM estimates as initial parameters. |
optim.method |
optimization method in |
lower |
lower bound for parameters; default is 0. |
upper |
upper bound for parameters; default is infinity. |
Value
estimate |
MLE estimate for beta parameters. |
convergence |
Convergence code from |
loglik |
Loglikelihood that corresponds with MLE estimated parameters. |
initial |
Initial parameters, either user-defined or determined from method of moments. |
hessian |
Estimated Hessian matrix at the given solution. |
Author(s)
Aleksandar Bradic
References
https://github.com/SupplyFrame/EmpiricalBayesR/blob/master/EmpiricalBayesEstimation.R
Examples
data(rat)
### MLE estimate of alpha and beta
rat.mle <- gMLE.bb(rat$y, rat$N)$estimate
rat.mle
### MoM estimate of alpha and beta
rat.mom <- gMLE.bb(rat$y, rat$N)$initial
rat.mom