DS.posterior.reduce {BayesGOF} | R Documentation |
Posterior Expectation and Modes of DS object
Description
A function that determines the posterior expectations E(\theta_0 | y_0)
and posterior modes for a set of observed data.
Usage
DS.posterior.reduce(DS.GF.obj, exposure)
Arguments
DS.GF.obj |
Object resulting from running DS.prior function on a data set. |
exposure |
In the case of the Poisson family with exposure, represents the exposure values for the count data. |
Value
Returns k \times 4
matrix with the columns indicating PEB mean, DS mean, PEB mode, and DS modes for k
observations in the data set.
Author(s)
Doug Fletcher
References
Mukhopadhyay, S. and Fletcher, D., 2018. "Generalized Empirical Bayes via Frequentist Goodness of Fit," Nature Scientific Reports, 8(1), p.9983, https://www.nature.com/articles/s41598-018-28130-5.
Examples
data(rat)
rat.start <- gMLE.bb(rat$y, rat$n)$estimate
rat.ds <- DS.prior(rat, max.m = 4, rat.start, family = "Binomial")
DS.posterior.reduce(rat.ds)
[Package BayesGOF version 5.2 Index]