| DS.micro.inf {BayesGOF} | R Documentation | 
MicroInference for DS Prior Objects
Description
 Provides DS nonparametric adaptive Bayes and parametric estimate for a specific observation y_0.
Usage
DS.micro.inf(DS.GF.obj, y.0, n.0, e.0 = NULL)
Arguments
| DS.GF.obj | Object resulting from running DS.prior function on a data set. | 
| y.0 |  For Binomial family, number of success  | 
| n.0 |  For the Binomial family, the total number of trials for the new study.  In the Normal family,  | 
| e.0 |  In the case of the Poisson family with exposure, represents the exposure value for a given count value  | 
Details
Returns an object of class DS.GF.micro that can be used in conjunction with plot command to display the DS posterior distribution for the new study.
Value
| DS.mean | Posterior mean for  | 
| DS.mode | Posterior mode for  | 
| PEB.mean | Posterior mean for  | 
| PEB.mode | Posterior mode for  | 
| post.vec | Vector containing  | 
| study | User-provided  | 
| post.fit | Dataframe with  | 
Author(s)
Doug Fletcher, Subhadeep Mukhopadhyay
References
Mukhopadhyay, S. and Fletcher, D., 2018. "Generalized Empirical Bayes via Frequentist Goodness of Fit," Nature Scientific Reports, 8(1), p.9983, https://www.nature.com/articles/s41598-018-28130-5.
Examples
### MicroInference for Naval Shipyard Data: sample where y = 0 and n = 5
data(ship)
ship.ds <- DS.prior(ship, max.m = 2, c(.5,.5), family = "Binomial")
ship.ds.micro <- DS.micro.inf(ship.ds, y.0 = 0, n.0 = 5)
ship.ds.micro
plot(ship.ds.micro)