| DS.Finite.Bayes {BayesGOF} | R Documentation | 
Conduct Finite Bayes Inference on a DS object
Description
A function that generates the finite Bayes prior and posterior distribution, along with the Bayesian credible interval for the posterior mean.
Usage
DS.Finite.Bayes(DS.GF.obj, y.0, n.0 = NULL, 
             cred.interval = 0.9, iters = 25)
Arguments
DS.GF.obj | 
 Object from   | 
y.0 | 
  For Binomial family, number of success   | 
n.0 | 
  For the Binomial family, the total number of trials for the new study.  In the Normal family,   | 
cred.interval | 
 The desired probability for the credible interval of the posterior mean; the default is 0.90 (  | 
iters | 
 Integer value of total number of iterations.  | 
Value
prior.fit | 
 Fitted values for the estimated parametric, DS, and finite Bayes prior distributions.  | 
post.fit | 
 Dataframe with   | 
interval | 
 The   | 
post.vec | 
 Vector containing the PEB posterior mean (  | 
Author(s)
Doug Fletcher, Subhadeep Mukhopadhyay
References
Mukhopadhyay, S. and Fletcher, D., 2018. "Generalized Empirical Bayes via Frequentist Goodness of Fit," Nature Scientific Reports, 8(1), p.9983, https://www.nature.com/articles/s41598-018-28130-5.
Efron, B., 2018. "Bayes, Oracle Bayes, and Empirical Bayes," Technical Report.
Examples
## Not run: 
### Finite Bayes: Rat with theta_71 (y_71 = 4, n_71 = 14)
data(rat)
rat.start <- gMLE.bb(rat$y, rat$n)$estimate
rat.ds <- DS.prior(rat, max.m = 4, rat.start. family = "Binomial")
rat.FB <- DS.FiniteBayes(rat.ds, y.0 = 4, n.0 = 14)
plot(rat.FB)
## End(Not run)