sampler.SGNHTS {BayesFluxR} | R Documentation |
Stochastic Gradient Nose-Hoover Thermostat as proposed in
Description
Proposed in Leimkuhler, B., & Shang, X. (2016). Adaptive thermostats for noisy gradient systems. SIAM Journal on Scientific Computing, 38(2), A712-A736.
Usage
sampler.SGNHTS(
l,
sigmaA = 1,
xi = 1,
mu = 1,
madapter = madapter.FixedMassMatrix()
)
Arguments
l |
Stepsize |
sigmaA |
Diffusion factor |
xi |
Thermostat |
mu |
Free parameter of thermostat |
madapter |
Mass Adapter; Not used in original paper and thus has no theoretical backing |
Details
This is similar to SGNHT as proposed in Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., & Neven, H. (2014). Bayesian sampling using stochastic gradient thermostats. Advances in neural information processing systems, 27.
Value
a list with 'juliavar', 'juliacode' and all arguments provided
Examples
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sampler <- sampler.SGNHTS(1e-3)
ch <- mcmc(bnn, 10, 1000, sampler)
## End(Not run)
[Package BayesFluxR version 0.1.3 Index]