sampler.SGLD {BayesFluxR} | R Documentation |
Stochastic Gradient Langevin Dynamics as proposed in Welling, M., & Teh, Y. W. (n.d.). Bayesian Learning via Stochastic Gradient Langevin Dynamics. 8.
Description
Stepsizes will be adapted according to
a(b+t)^{-\gamma}
Usage
sampler.SGLD(
stepsize_a = 0.1,
stepsize_b = 0,
stepsize_gamma = 0.55,
min_stepsize = -Inf
)
Arguments
stepsize_a |
See eq. above |
stepsize_b |
See eq. above |
stepsize_gamma |
see eq. above |
min_stepsize |
Do not decrease stepsize beyond this |
Value
a list with 'juliavar', 'juliacode', and all given arguments
Examples
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sampler <- sampler.SGLD()
ch <- mcmc(bnn, 10, 1000, sampler)
## End(Not run)
[Package BayesFluxR version 0.1.3 Index]