sampler.HMC {BayesFluxR} | R Documentation |
Standard Hamiltonian Monte Carlo (Hybrid Monte Carlo).
Description
Allows for the use of stochastic gradients, but the validity of doing so is not clear.
Usage
sampler.HMC(
l,
path_len,
sadapter = sadapter.DualAverage(1000),
madapter = madapter.FixedMassMatrix()
)
Arguments
l |
stepsize |
path_len |
number of leapfrog steps |
sadapter |
Stepsize adapter |
madapter |
Mass adapter |
Details
This is motivated by parts of the discussion in Neal, R. M. (1996). Bayesian Learning for Neural Networks (Vol. 118). Springer New York. https://doi.org/10.1007/978-1-4612-0745-0
Value
a list with 'juliavar', 'juliacode', and all given arguments
Examples
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sadapter <- sadapter.DualAverage(100)
sampler <- sampler.HMC(1e-3, 3, sadapter = sadapter)
ch <- mcmc(bnn, 10, 1000, sampler)
## End(Not run)
[Package BayesFluxR version 0.1.3 Index]