sampler.AdaptiveMH {BayesFluxR} | R Documentation |
Adaptive Metropolis Hastings as introduced in
Description
Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli, 223-242.
Usage
sampler.AdaptiveMH(bnn, t0, sd, eps = 1e-06)
Arguments
bnn |
BNN obtained using |
t0 |
Number of iterators before covariance adaptation will be started. Also the lookback period for covariance adaptation. |
sd |
Tuning parameter; See paper |
eps |
Used for numerical reasons. Increase this if pos-def-error thrown. |
Value
a list with 'juliavar', 'juliacode', and all given arguments
Examples
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sampler <- sampler.AdaptiveMH(bnn, 10, 1)
ch <- mcmc(bnn, 10, 1000, sampler)
## End(Not run)
[Package BayesFluxR version 0.1.3 Index]