sadapter.DualAverage {BayesFluxR} | R Documentation |
Use Dual Averaging like in STAN to tune stepsize
Description
Use Dual Averaging like in STAN to tune stepsize
Usage
sadapter.DualAverage(
adapt_steps,
initial_stepsize = 1,
target_accept = 0.65,
gamma = 0.05,
t0 = 10,
kappa = 0.75
)
Arguments
adapt_steps |
number of adaptation steps |
initial_stepsize |
initial stepsize |
target_accept |
target acceptance ratio |
gamma |
See STAN manual NUTS paper |
t0 |
See STAN manual or NUTS paper |
kappa |
See STAN manual or NUTS paper |
Value
list with 'juliavar', 'juliacode', and all given arguments
Examples
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sadapter <- sadapter.DualAverage(100)
sampler <- sampler.GGMC(sadapter = sadapter)
ch <- mcmc(bnn, 10, 1000, sampler)
## End(Not run)
[Package BayesFluxR version 0.1.3 Index]