posterior_predictive {BayesFluxR} | R Documentation |
Draw from the posterior predictive distribution
Description
Draw from the posterior predictive distribution
Usage
posterior_predictive(bnn, posterior_samples, x = NULL)
Arguments
bnn |
a BNN obtained using |
posterior_samples |
a vector or matrix containing posterior
samples. This can be obtained using |
x |
input variables. If 'NULL' (default), training values will be used. |
Value
A matrix whose columns are the posterior predictive draws.
Examples
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
sampler <- sampler.SGLD()
ch <- mcmc(bnn, 10, 1000, sampler)
pp <- posterior_predictive(bnn, ch$samples)
## End(Not run)
[Package BayesFluxR version 0.1.3 Index]