likelihood.feedforward_normal {BayesFluxR} | R Documentation |
Use a Normal likelihood for a Feedforward network
Description
This creates a likelihood of the form
y_i \sim Normal(net(x_i), \sigma)\;\forall i=1,...,N
where the x_i
is fed through the network in a standard feedforward way.
Usage
likelihood.feedforward_normal(chain, sig_prior)
Arguments
chain |
Network structure obtained using |
sig_prior |
A prior distribution for sigma defined using
|
Value
A list containing the following
juliavar - julia variable containing the likelihood
juliacode - julia code used to create the likelihood
Examples
## Not run:
## Needs previous call to `BayesFluxR_setup` which is time
## consuming and requires Julia and BayesFlux.jl
BayesFluxR_setup(installJulia=TRUE, seed=123)
net <- Chain(Dense(5, 1))
like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
prior <- prior.gaussian(net, 0.5)
init <- initialise.allsame(Normal(0, 0.5), like, prior)
x <- matrix(rnorm(5*100), nrow = 5)
y <- rnorm(100)
bnn <- BNN(x, y, like, prior, init)
BNN.totparams(bnn)
## End(Not run)
[Package BayesFluxR version 0.1.3 Index]