| BNN {BayesFluxR} | R Documentation | 
Create a Bayesian Neural Network
Description
Create a Bayesian Neural Network
Usage
BNN(x, y, like, prior, init)
Arguments
| x | For a Feedforward structure, this must be a matrix of dimensions variables x observations; For a recurrent structure, this must be a tensor of dimensions sequence_length x number_variables x number_sequences; In general, the last dimension is always the dimension over which will be batched. | 
| y | A vector or matrix with observations. | 
| like | Likelihood; See for example  | 
| prior | Prior; See for example  | 
| init | Initialiser; See for example  | 
Value
List with the following content
- 'juliavar' - the julia variable containing the BNN 
- 'juliacode' - the string representation of the BNN 
- 'x' - x 
- 'juliax' - julia variable holding x 
- 'y' - y 
- 'juliay' - julia variable holding y 
Examples
## Not run: 
  ## Needs previous call to `BayesFluxR_setup` which is time
  ## consuming and requires Julia and BayesFlux.jl
  BayesFluxR_setup(installJulia=TRUE, seed=123)
  net <- Chain(Dense(5, 1))
  like <- likelihood.feedforward_normal(net, Gamma(2.0, 0.5))
  prior <- prior.gaussian(net, 0.5)
  init <- initialise.allsame(Normal(0, 0.5), like, prior)
  x <- matrix(rnorm(5*100), nrow = 5)
  y <- rnorm(100)
  bnn <- BNN(x, y, like, prior, init)
  sampler <- sampler.SGLD()
  ch <- mcmc(bnn, 10, 1000, sampler)
## End(Not run)
[Package BayesFluxR version 0.1.3 Index]