cace.meta.c {BayesCACE} | R Documentation |
Bayesian hierarchical models for CACE meta-analysis with complete compliance data
Description
This function performs the Bayesian hierarchical model method for meta-analysis when the dataset has complete compliance information for all studies, as described in Section 2.2, "the Bayesian hierarchical model", of the package manuscript.
Usage
cace.meta.c(
data,
param = c("CACE", "u1out", "v1out", "s1out", "b1out", "pic", "pin", "pia"),
random.effects = list(),
re.values = list(),
model.code = "",
digits = 3,
n.adapt = 1000,
n.iter = 1e+05,
n.burnin = floor(n.iter/2),
n.chains = 3,
n.thin = max(1, floor((n.iter - n.burnin)/1e+05)),
conv.diag = FALSE,
mcmc.samples = FALSE,
study.specific = FALSE
)
Arguments
data |
an input dataset with the same structure as the example data |
param |
a character string vector indicating the parameters to be tracked and estimated.
By default the following parameters (see |
random.effects |
a list of logical values indicating whether random effects are included in the model.
The list should contain the assignment for these parameters only: |
re.values |
a list of parameter values for the random effects. It should contain the assignment for these
parameters only: |
model.code |
a string representation of the model code; each line should be separated. Default to constructing
model code using the |
digits |
number of digits. Default to |
n.adapt |
adapt value. Default to |
n.iter |
number of iterations. Default to |
n.burnin |
number of burn-in iterations. Default to |
n.chains |
number of chains. Default to |
n.thin |
thinning rate, must be a positive integer. Default to |
conv.diag |
whether or not to show convergence diagnostics. Default to |
mcmc.samples |
whether to include JAGS samples in the final output. Default to |
study.specific |
a logical value indicating whether to calculate the study-specific
|
Value
It returns a model object whose attribute type is cace.Bayes
References
Zhou J, Hodges JS, Suri MFK, Chu H (2019). “A Bayesian hierarchical model estimating CACE in meta-analysis of randomized clinical trials with noncompliance.” Biometrics, 75(3), 978–987.
Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D (2012). The BUGS book: A practical introduction to Bayesian analysis. CRC press.
Zeger SL, Liang K, Albert PS (1988). “Models for longitudinal data: a generalized estimating equation approach.” Biometrics, 1049–1060.
See Also
Examples
data("epidural_c", package = "BayesCACE")
set.seed(123)
out.meta.c <- cace.meta.c(data = epidural_c, conv.diag = TRUE,
mcmc.samples = TRUE, study.specific = TRUE)
# By calling the object smry from the output list out.meta.c, posterior estimates
# (posterior mean, standard deviation, posterior median, 95\% credible interval, and
# time-series standard error) are displayed.
out.meta.c$smry
out.meta.c$DIC