| mbgcnbd.EstimateParameters {BTYDplus} | R Documentation | 
(M)BG/CNBD-k Parameter Estimation
Description
Estimates parameters for the (M)BG/CNBD-k model via Maximum Likelihood Estimation.
Usage
mbgcnbd.EstimateParameters(
  cal.cbs,
  k = NULL,
  par.start = c(1, 3, 1, 3),
  max.param.value = 10000,
  trace = 0
)
bgcnbd.EstimateParameters(
  cal.cbs,
  k = NULL,
  par.start = c(1, 3, 1, 3),
  max.param.value = 10000,
  trace = 0
)
mbgnbd.EstimateParameters(
  cal.cbs,
  par.start = c(1, 3, 1, 3),
  max.param.value = 10000,
  trace = 0
)
Arguments
| cal.cbs | Calibration period customer-by-sufficient-statistic (CBS)
data.frame. It must contain a row for each customer, and columns  | 
| k | Integer-valued degree of regularity for Erlang-k distributed
interpurchase times. By default this  | 
| par.start | Initial (M)BG/CNBD-k parameters. A vector with  | 
| max.param.value | Upper bound on parameters. | 
| trace | If larger than 0, then the parameter values are is printed every
 | 
Value
A vector of estimated parameters.
References
(M)BG/CNBD-k: Reutterer, T., Platzer, M., & Schroeder, N. (2020). Leveraging purchase regularity for predicting customer behavior the easy way. International Journal of Research in Marketing. doi: 10.1016/j.ijresmar.2020.09.002
Batislam, E. P., Denizel, M., & Filiztekin, A. (2007). Empirical validation and comparison of models for customer base analysis. International Journal of Research in Marketing, 24(3), 201-209. doi: 10.1016/j.ijresmar.2006.12.005
See Also
Examples
## Not run: 
data("groceryElog")
cbs <- elog2cbs(groceryElog)
(params <- mbgcnbd.EstimateParameters(cbs))
## End(Not run)