| abe.mcmc.DrawParameters {BTYDplus} | R Documentation | 
Pareto/NBD (Abe) Parameter Draws
Description
Returns draws from the posterior distributions of the Pareto/NBD (Abe) parameters, on cohort as well as on customer level.
Usage
abe.mcmc.DrawParameters(
  cal.cbs,
  covariates = c(),
  mcmc = 2500,
  burnin = 500,
  thin = 50,
  chains = 2,
  mc.cores = NULL,
  trace = 100
)
Arguments
| cal.cbs | Calibration period customer-by-sufficient-statistic (CBS)
data.frame. It must contain a row for each customer, and columns  | 
| covariates | A vector of columns of  | 
| mcmc | Number of MCMC steps. | 
| burnin | Number of initial MCMC steps which are discarded. | 
| thin | Only every  | 
| chains | Number of MCMC chains to be run. | 
| mc.cores | Number of cores to use in parallel (Unix only). Defaults to  | 
| trace | Print logging statement every  | 
Details
See demo('pareto-abe') for how to apply this model.
Value
List of length 2:
| level_1 | list of  | 
| level_2 | 
 | 
References
Abe, M. (2009). "Counting your customers" one by one: A hierarchical Bayes extension to the Pareto/NBD model. Marketing Science, 28(3), 541-553. doi: 10.1287/mksc.1090.0502
See Also
abe.GenerateData  mcmc.PAlive  mcmc.DrawFutureTransactions 
Examples
data("groceryElog")
cbs <- elog2cbs(groceryElog, T.cal = "2006-12-31")
cbs$cov1 <- as.integer(cbs$cust) %% 2 # create dummy covariate
param.draws <- abe.mcmc.DrawParameters(cbs, c("cov1"),
  mcmc = 100, burnin = 50, thin = 10, chains = 1) # short MCMC to run demo fast
# cohort-level parameter draws
as.matrix(param.draws$level_2)
# customer-level parameter draws for customer with ID '4'
as.matrix(param.draws$level_1[["4"]])
# estimate future transactions
xstar.draws <- mcmc.DrawFutureTransactions(cbs, param.draws, cbs$T.star)
xstar.est <- apply(xstar.draws, 2, mean)
head(xstar.est)