simplesimint {BSagri} | R Documentation |
Simultaneous confidence intervals from raw estimates
Description
Calculates simultaneous confidence intervals for multiple contrasts based on a parameter vector, its variance-covariance matrix and (optionally) the degrees of freedom, using quantiles of the multivar
Usage
simplesimint(coef, vcov, cmat, df = NULL, conf.level = 0.95,
alternative = c("two.sided", "less", "greater"))
Arguments
coef |
a single numeric vector, specifying the point estimates of the parameters of interest |
vcov |
the variance-covariance matrix corresponding to |
cmat |
the contrasts matrix specifying the comparisons of interest with respect to |
df |
optional, the degree of freedom for the multivariate t-distribution; if specified, quantiles from the multivariate t-distribution are used for confidence interval estimation, if not specified (default), quantiles of the multivariate normal distribution are used |
conf.level |
a single numeric value between 0.5 and 1.0; the simultaneous confidence level |
alternative |
a single character string, |
Details
Implements the methods formerly available in package multcomp, function csimint
.
Input values are a vector of parameter estimates \mu
of length P
,
a corresponding estimate for its variance-covariance matrix \Sigma
(P times P), and a
contrast matrix C
of dimension M \times P
. The contrasts L = C \mu
are computed,
the variance-covariance matrix (being a function of C
and \Sigma
) and the corresponding correlation matrix R
are computed.
Finally, confidence intervals for L
are computed: if df is given, quantiles of an M-dimensional t distribution with correlation matrix R are used,
otherwise quantiles of an M-dimensional standard normal distribution with correlation matrix R are used.
Value
An object of class "simplesimint"
estimate |
the estimates of the contrasts |
lower |
the lower confidence limits |
upper |
the upper confidence limits |
cmat |
the contrast matrix, as input |
alternative |
a character string, as input |
conf.level |
a numeric value, as input |
quantile |
a numeric value, the quantile used for confidence interval estimation |
df |
a numeric value or NULL, as input |
stderr |
the standard error of the contrasts |
vcovC |
the variance covariance matrix of the contrasts |
Note
This is a testversion and has not been checked extensively.
Author(s)
Frank Schaarschmidt
See Also
See ?coef
and ?vcov
for extracting of parameter vectors and corresponding variance covariance matrices from various model fits.
Examples
# For the simple case of Gaussian response
# variables with homoscedastic variance,
# see the following example
library(mratios)
data(angina)
boxplot(response ~ dose, data=angina)
# Fit a cell means model,
fit<-lm(response ~ 0+dose, data=angina)
# extract cell means, the corresponding
# variance-covariance matrix and the
# residual degree of freedom,
cofi<-coef(fit)
vcofi<-vcov(fit)
dofi<-fit$df.residual
# define an appropriate contrast matrix,
# here, comparisons to control
n<-unlist(lapply(split(angina$response, f=angina$dose), length))
names(n)<-names(cofi)
cmat<-contrMat(n=n, type="Dunnett")
cmat
#
test<-simplesimint(coef=cofi, vcov=vcofi, df=dofi, cmat=cmat, alternative="greater" )
test
summary(test)
plotCI(test)
### Note, that the same result can be achieved much more conveniently
### using confint.glht in package multcomp