posteriorMCMC.nl {BMAmevt} | R Documentation |
MCMC posterior samplers for the pairwise beta and the negative logistic models.
Description
The functions generate parameters samples approximating the posterior distribution in the PB model or the NL model.
Usage
posteriorMCMC.nl(Nsim, dat, Hpar, MCpar, ...)
posteriorMCMC.pb(Nsim, dat, Hpar, MCpar, ...)
Arguments
Nsim |
Total number of iterations to perform. |
dat |
An angular data set, e.g., constructed by
|
Hpar |
A list containing Hyper-parameters to be passed to
|
MCpar |
A list containing MCMC tuning parameters to be
passed to |
... |
Additional arguments to be passed to
|
Details
The two functions are wrappers simplifying the use of
posteriorMCMC
for the two models implemented in this package.
Value
an object with class attributes "postsample"
and
"PBNLpostsample"
: The posterior sample and some statistics
as returned by function posteriorMCMC
Note
For the Leeds data set, and for simulated data sets with
similar features, setting Nsim=50e+3
and Nbin=15e+3
is enough (possibly too much),
with respect to the Heidelberger and Welch tests implemented in
heidel.diag
.
See Also
Examples
## Not run:
data(Leeds)
data(pb.Hpar)
data(pb.MCpar)
data(nl.Hpar)
data(nl.MCpar)
pPB <- posteriorMCMC.pb(Nsim=5e+3, dat=Leeds, Hpar=pb.Hpar,
MCpar=pb.MCpar)
dim(pPB[1])
pPB[-(1:3)]
pNL <- posteriorMCMC.nl(Nsim=5e+3, dat=Leeds, Hpar=nl.Hpar,
MCpar=nl.MCpar)
dim(pNL[1])
pNL[-(1:3)]
## End(Not run)