posteriorMCMC {BMAmevt} | R Documentation |
MCMC sampler for parametric spectral measures
Description
Generates a posterior parameters sample, and computes the posterior mean and component-wise variance on-line.
Usage
posteriorMCMC(
prior = function(type = c("r", "d"), n, par, Hpar, log, dimData) {
NULL
},
proposal = function(type = c("r", "d"), cur.par, prop.par, MCpar, log) {
NULL
},
likelihood = function(x, par, log, vectorial) {
NULL
},
Nsim,
dat,
Hpar,
MCpar,
Nbin = 0,
par.start = NULL,
show.progress = floor(seq(1, Nsim, length.out = 20)),
seed = NULL,
kind = "Mersenne-Twister",
save = FALSE,
class = NULL,
name.save = NULL,
save.directory = "~",
name.dat = "",
name.model = ""
)
Arguments
prior |
The prior distribution: of type |
proposal |
The proposal function: of type |
likelihood |
The likelihood function.
Should be of type |
Nsim |
Total number of iterations to perform. |
dat |
An angular data set, e.g., constructed by
|
Hpar |
A list containing Hyper-parameters to be passed to
|
MCpar |
A list containing MCMC tuning parameters to be
passed to |
Nbin |
Length of the burn-in period. |
par.start |
Starting point for the MCMC sampler. |
show.progress |
An vector of integers containing the times (iteration numbers) at which a message showing progression will be printed on the standard output. |
seed |
The seed to be set via
|
kind |
The kind of random numbers generator. Default to
"Mersenne-Twister". See |
save |
Logical. Should the result be saved ? |
class |
Optional character string: additional class attribute to be assigned to the result. A predefined class |
name.save |
A character string giving the name under which
the result is to be saved. If |
save.directory |
A character string giving the directory where the result is to be saved (without trailing slash). |
name.dat |
A character string naming the data set used for inference. Default to |
name.model |
A character string naming the model. Default to |
Value
A list made of
-
stored.vals
: A(Nsim-Nbin)*d
matrix, whered
is the dimension of the parameter space. -
llh
A vector of size(Nsim-Nbin)
containing the loglikelihoods evaluated at each parameter of the posterior sample. -
lprior
A vector of size(Nsim-Nbin)
containing the logarithm of the prior densities evaluated at each parameter of the posterior sample. -
elapsed
: The time elapsed, as given byproc.time
between the start and the end of the run. -
Nsim
: The same as the passed argument -
Nbin
: idem. n.accept
: The total number of accepted proposals.-
n.accept.kept
: The number of accepted proposals after the burn-in period. -
emp.mean
The estimated posterior parameters mean -
emp.sd
The empirical posterior sample standard deviation.
See Also
posteriorMCMC.pb
,
posteriorMCMC.pb
for specific uses
in the PB and the NL models.
Examples
data(Leeds)
data(pb.Hpar)
data(pb.MCpar)
postsample1 <- posteriorMCMC(Nsim=1e+3,Nbin=500,
dat= Leeds,
prior = prior.pb,
proposal = proposal.pb,
likelihood = dpairbeta,
Hpar=pb.Hpar,
MCpar=pb.MCpar)
dim(postsample1[[1]])
postsample1[-1]
## Not run:
## a more realistic one:
postsample2 <- posteriorMCMC(Nsim=50e+3,Nbin=15e+3,
dat= Leeds,
prior = prior.pb,
proposal = proposal.pb,
likelihood = dpairbeta,
Hpar=pb.Hpar,
MCpar=pb.MCpar)
dim(postsample2[[1]])
postsample2[-1]
## End(Not run)