ddirimix {BMAmevt} | R Documentation |
Angular density/likelihood function in the Dirichlet Mixture model.
Description
Likelihood function (spectral density on the simplex) and angular data sampler in the Dirichlet mixture model.
Usage
ddirimix(
x = c(0.1, 0.2, 0.7),
par,
wei = par$wei,
Mu = par$Mu,
lnu = par$lnu,
log = FALSE,
vectorial = FALSE
)
rdirimix(
n = 10,
par = get("dm.expar.D3k3"),
wei = par$wei,
Mu = par$Mu,
lnu = par$lnu
)
Arguments
x |
An angular data set which may be reduced to a single point:
A |
par |
The parameter list for the Dirichlet mixture model. |
wei |
Optional. If present, overrides the value of
|
Mu |
Optional. If present, overrides the value of
|
lnu |
Optional. If present, overrides the value of
|
log |
Logical: should the density or the likelihood be returned on the log-scale ? |
vectorial |
Logical: Should a vector of size |
n |
The number of angular points to be generated |
Details
The spectral probability measure defined on the simplex
characterizes the
dependence structure of multivariate extreme value models.
The parameter list for a mixture
with k
components, is made of
- Mu
The density kernel centers
\mu_{i,m}, 1\le i \le p, 1\le m \le k
: Ap*k
matrix, which columns sum to one, and such thatMu %*% wei=1
, for the moments constraint to be satisfied. Each column is a Dirichlet kernel center.- wei
The weights vector for the kernel densities: A vector of
k
positive numbers summing to one.- lnu
The logarithms of the shape parameters
nu_m, 1\le m \le k
for the density kernels: a vector of sizek
.
The moments constraint imposes that the barycenter of the columns in
Mu
, with weights wei
, be the center of the simplex.
Value
ddirimix
returns the likelihood as a single number if
vectorial ==FALSE
, or as a vector of size
nrow(x)
containing the likelihood of each angular data point.
If log == TRUE
, the log-likelihood is returned instead.
rdirimix
returns a matrix with n
points and
p=nrow(Mu)
columns.