simulate_spatiotemporal_data {BKTR} | R Documentation |
Simulate Spatiotemporal Data Using Kernel Covariances.
Description
Simulate Spatiotemporal Data Using Kernel Covariances.
Usage
simulate_spatiotemporal_data(
nb_locations,
nb_time_points,
nb_spatial_dimensions,
spatial_scale,
time_scale,
spatial_covariates_means,
temporal_covariates_means,
spatial_kernel,
temporal_kernel,
noise_variance_scale
)
Arguments
nb_locations |
Integer: Number of spatial locations |
nb_time_points |
Integer: Number of time points |
nb_spatial_dimensions |
Integer: Number of spatial dimensions |
spatial_scale |
Numeric: Spatial scale |
time_scale |
Numeric: Time scale |
spatial_covariates_means |
Vector: Spatial covariates means |
temporal_covariates_means |
Vector: Temporal covariates means |
spatial_kernel |
Kernel: Spatial kernel |
temporal_kernel |
Kernel: Temporal kernel |
noise_variance_scale |
Numeric: Noise variance scale |
Value
A list containing 4 dataframes: - 'data_df' contains the response variable and the covariates - 'spatial_positions_df' contains the spatial locations and their coordinates - 'temporal_positions_df' contains the time points and their coordinates - 'beta_df' contains the true beta coefficients
Examples
# Simulate data with 20 locations, 30 time points, in 2D spatial dimensions
# with 3 spatial covariates and 2 temporal covariates
simu_data <- simulate_spatiotemporal_data(
nb_locations=20,
nb_time_points=30,
nb_spatial_dimensions=2,
spatial_scale=10,
time_scale=10,
spatial_covariates_means=c(0, 2, 4),
temporal_covariates_means=c(1, 3),
spatial_kernel=KernelMatern$new(),
temporal_kernel=KernelSE$new(),
noise_variance_scale=1)
# The dataframes are similar to bixi_data, we have:
# - data_df
head(simu_data$data_df)
# - spatial_positions_df
head(simu_data$spatial_positions_df)
# - temporal_positions_df
head(simu_data$temporal_positions_df)
# We also obtain the true beta coefficients used to simulate the data
head(simu_data$beta_df)
[Package BKTR version 0.1.1 Index]