plot_spatial_betas {BKTR} | R Documentation |
Plot Spatial Beta Coefficients
Description
Create a plot of beta values through space for a given temporal point and a set of feature labels.
Usage
plot_spatial_betas(
bktr_reg,
plot_feature_labels,
temporal_point_label,
nb_cols = 1,
use_dark_mode = TRUE,
show_figure = TRUE,
zoom = 11,
google_token = NULL,
fig_width = 8.5,
fig_height = 5.5,
fig_resolution = 200
)
Arguments
bktr_reg |
BKTRRegressor: BKTRRegressor object. |
plot_feature_labels |
Array: Array of feature labels to plot. |
temporal_point_label |
String: Temporal point label to plot. |
nb_cols |
Integer: The number of columns to use in the facet grid. |
use_dark_mode |
Boolean: Whether to use a dark mode for the geographic map or not. |
show_figure |
Boolean: Whether to show the figure. Defaults to True. |
zoom |
Integer: Zoom level for the geographic map. Defaults to 11. |
google_token |
String or NULL: Google API token to use for the geographic map. Defaults to NULL. If NULL, use Stamen maps. |
fig_width |
Numeric: Figure width when figure is shown. Defaults to 8.5. |
fig_height |
Numeric: Figure height when figure is shown. Defaults to 5.5. |
fig_resolution |
Numeric: Figure resolution PPI. Defaults to 200. |
Value
ggplot or NULL: ggplot object or NULL if show_figure is set to FALSE.
Examples
# Launch MCMC sampling on a light version of the BIXI dataset
bixi_data <- BixiData$new(is_light = TRUE)
bktr_regressor <- BKTRRegressor$new(
data_df <- bixi_data$data_df,
spatial_positions_df = bixi_data$spatial_positions_df,
temporal_positions_df = bixi_data$temporal_positions_df,
burn_in_iter = 5, sampling_iter = 10) # For example only (too few iterations)
bktr_regressor$mcmc_sampling()
# Plot spatial beta coefficients for the first time point and the two features
plot_spatial_betas(
bktr_regressor,
plot_feature_labels = c('mean_temp_c', 'area_park'),
temporal_point_label = bixi_data$temporal_positions_df$time[1])
# We can also use light mode and plot the maps side by side
plot_spatial_betas(
bktr_regressor,
plot_feature_labels = c('mean_temp_c', 'area_park', 'total_precip_mm'),
temporal_point_label = bixi_data$temporal_positions_df$time[10],
use_dark_mode = FALSE, nb_cols = 3)