KernelWhiteNoise {BKTR} | R Documentation |
R6 class for White Noise Kernels
Description
R6 class for White Noise Kernels
Super class
BKTR::Kernel
-> KernelWhiteNoise
Public fields
has_dist_matrix
Identify if the kernel has a distance matrix or not
name
The kernel's name
Methods
Public methods
Inherited methods
Method new()
Usage
KernelWhiteNoise$new(kernel_variance = 1, jitter_value = NULL)
Arguments
kernel_variance
Numeric: The variance of the kernel
jitter_value
Numeric: The jitter value to add to the kernel matrix
Returns
A new KernelWhiteNoise
object.
Method core_kernel_fn()
Method to compute the core kernel's covariance matrix
Usage
KernelWhiteNoise$core_kernel_fn()
Returns
The core kernel's covariance matrix
Method clone()
The objects of this class are cloneable with this method.
Usage
KernelWhiteNoise$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
# Create a new white noise kernel
k_white_noise <- KernelWhiteNoise$new()
# Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_white_noise$set_positions(positions_df)
# Generate the kernel's covariance matrix
k_white_noise$kernel_gen()
[Package BKTR version 0.1.1 Index]