KernelSE {BKTR} | R Documentation |
R6 class for Square Exponential Kernels
Description
R6 class for Square Exponential Kernels
Super class
BKTR::Kernel
-> KernelSE
Public fields
lengthscale
The lengthscale parameter instance of the kernel
has_dist_matrix
Identify if the kernel has a distance matrix or not
name
The kernel's name
Methods
Public methods
Inherited methods
Method new()
Create a new KernelSE
object.
Usage
KernelSE$new( lengthscale = KernelParameter$new(2), kernel_variance = 1, jitter_value = NULL )
Arguments
lengthscale
KernelParameter: The lengthscale parameter instance of the kernel
kernel_variance
Numeric: The variance of the kernel
jitter_value
Numeric: The jitter value to add to the kernel matrix
Returns
A new KernelSE
object.
Method core_kernel_fn()
Method to compute the core kernel's covariance matrix
Usage
KernelSE$core_kernel_fn()
Returns
The core kernel's covariance matrix
Method clone()
The objects of this class are cloneable with this method.
Usage
KernelSE$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
# Create a new SE kernel
k_se <- KernelSE$new()
# Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_se$set_positions(positions_df)
# Generate the kernel's covariance matrix
k_se$kernel_gen()
[Package BKTR version 0.1.1 Index]