| KernelRQ {BKTR} | R Documentation |
R6 class for Rational Quadratic Kernels
Description
R6 class for Rational Quadratic Kernels
Super class
BKTR::Kernel -> KernelRQ
Public fields
lengthscaleThe lengthscale parameter instance of the kernel
alphaThe alpha parameter instance of the kernel
has_dist_matrixThe distance matrix between points in a tensor format
nameThe kernel's name
Methods
Public methods
Inherited methods
Method new()
Create a new KernelRQ object.
Usage
KernelRQ$new( lengthscale = KernelParameter$new(2), alpha = KernelParameter$new(2), kernel_variance = 1, jitter_value = NULL )
Arguments
lengthscaleKernelParameter: The lengthscale parameter instance of the kernel
alphaKernelParameter: The alpha parameter instance of the kernel
kernel_varianceNumeric: The variance of the kernel
jitter_valueNumeric: The jitter value to add to the kernel matrix
Returns
A new KernelRQ object.
Method core_kernel_fn()
Method to compute the core kernel's covariance matrix
Usage
KernelRQ$core_kernel_fn()
Returns
The core kernel's covariance matrix
Method clone()
The objects of this class are cloneable with this method.
Usage
KernelRQ$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
# Create a new RQ kernel
k_rq <- KernelRQ$new()
# Set the kernel's positions
positions_df <- data.frame(x=c(-4, 0, 3), y=c(-2, 0, 2))
k_rq$set_positions(positions_df)
# Generate the kernel's covariance matrix
k_rq$kernel_gen()
[Package BKTR version 0.1.1 Index]